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1Chapter 1
Introduction

The desire for more mobility and the enthusiasm for ubiquitous electronic gadgets
on the one hand side and the steady progress in semiconductor industry on the other
hand are the driving forces in the market of embedded digital systems. The growing
number of stream­based applications is eager for more computational power. Exam­
ples of such systems include handhelds for digital audio and video broadcasting and
navigation, next generation game and entertainment consoles with high­definition
television (HDTV) support and high­capacity storage media like HD DVD or Blu­
ray Disc. Other demanding applications with real­time requirements can be found
in the areas of medical image processing, radar technology, and robotics.

Feature sizes reaching nanoscopic scale allow implementations of complex sys­
tems on a single die. These designs are called system­on­a­chip (SoC) or in case multi­
ple embedded processors are included, multiprocessor system­on­a­chip (MPSoC). The
usual components of such a system are sketched in Figure 1.1. Typically, an SoC con­
sists of one or more embedded processors, memories, I/O interfaces, accelerators for
dedicated tasks, and a communication network for connecting the individual parts
of the system. Note that the communication network as indicated by the graphic
can be an arbitrary, maybe hierarchic interconnect structure, which might consist
of several busses or point­to­point connections. The situation for the accelerators
is similar. Here, an abundance of variations exists, ranging from custom hardware
in form of application­specific integrated circuits (ASICs) to fine­grained reconfig­
urable devices (FPGAs) and finally to reconfigurable or programmable architectures
consisting of an array of coarse­grained elements such as functional units of fixed
word size.

In order to handle the complexity of such highly integrated systems, they are
preferably designed in a top­down strategy starting at the so­called electronic system­

1
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6

embedded
processor

memory

I/O
interfaceaccelerator

communication network

processor array

Figure 1.1: Schematic representation of a system­on­a­chip (SoC). One possible real­
ization of an accelerator could be a processor array. These arrays, either implemented
as dedicated hardware for a single algorithm or in form of a programmable architec­
ture, are the field of investigation in this thesis.

level (ESL). In [BMP07], Bailey, Martin, and Piziali define ESL as: "The use of
appropriate abstractions to increase comprehension of a system and enhance the probabil­
ity of successfully implementing its functionality in a cost­effective manner, while meet­
ing necessary constraints." Design decisions at system­level have the greatest influence
on performance, cost, power consumption, and design time. Thus, ESL design is
strongly related to the exploration of multiple possible solutions (design space explo­
ration) [KSS+09]. Further, its integral view enables the early verification of a design
specification. In order to reduce the time to market, mainly two approaches are
pursued:

1. A modular design principle often referred to as platform­based design [KMN+00,
SCDS04], where already designed components are systematically reused and
assembled to an SoC.

2. Synthesis addresses (a), the automatic refinement of descriptions from one ab­
straction level to another; and (b), the translation of a behavioral description
into a structural representation.

Both approaches seek expressive modeling and specification possibilities. Depending
on the abstraction level (see Figure 1.2) and whether hardware or software is de­
signed, different modeling and programming languages are used. On the hardware
side, the description languages VHDL and Verilog are most widespread. For devel­
oping embedded software, common languages are assembler, C, C++, and Java. At

2
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software hardware
electronic system­level

module level

block level

architecture level

logic level
system­level synthesis

software synthesis

high­level
synthesis

logic
synthesis

Figure 1.2: Abstraction levels for the design of embedded systems, adapted from Te­
ich’s double roof model [Tei97]. The upper roof denotes the behavioral view, the lower
one the structural view. The present work focuses on high­level synthesis (marked in
light blue).

the system­level, for the domain of digital signal and image processing, Matlab, C,
C++, and SystemC are the languages of choice. Noteworthy about SystemC is that it
tries to cover both sides, software and hardware [GLMS02]. Moreover, descriptions
in SystemC can be successively refined for lower abstraction levels.

The synthesis at different abstraction levels is marked in Figure 1.2. The lower
a synthesis type is placed on the roof, the older and more studied it is. For instance,
logic synthesis can be traced back to the 19th century to the treatment of Boolean al­
gebra, in addition the works in logic minimization by Shannon, Quine­McCluskey,
or Karnaugh and Veitch are well­known. Thus, in the 1980s, logic synthesis was the
first automated translation from Boolean equations to gate­level structures. Similar
on the software side, the translation from assembly code to binary code is researched
quite well. Some proponents of ESL design claim that the abstraction levels be­
low system­level have been—similar to logic synthesis—mostly investigated. This
is not true, since in academia as well as in industry there exists a great demand for
high­level synthesis (also referred to as behavioral synthesis) methods that automatically
transfer an algorithmic behavioral description into an efficient representation at reg­
ister transfer level (RTL). High­level synthesis is a cutting­edge research topic with
a multitude of challenges and open questions. This hypothesis is supported by a
number of special sessions and workshops on this topic at recent premier electronic
design automation conferences1.

1For instance: Workshop The New Wave of the High Level Synthesis at Design, Automation and
Test in Europe (DATE 2008); Workshop High­level Synthesis: Back to the Future at Design Automa­
tion Conference (DAC 2008); Workshop High­Level Synthesis: Next Step to Efficient ESL Design at
Asia and South Pacific Design Automation Conference (ASP­DAC 2009).
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j

T1
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PE1

PE2

global Ctrl.

local Ctrl.

local Ctrl.

Memory

Memory

Data Path

Data Path

Figure 1.3: In (a), a two­dimensional iteration space consisting of 64 iterations and
its hierarchical structuring into different subspaces, denoted by the white and gray
tiles, is depicted. In (b), a corresponding dedicated hardware implementation with
two processing elements is schematically shown.

The major challenges in high­level synthesis are:

• Domain­specific models and languages that preserve the parallelism of an ini­
tially given mathematical description.

• Parallelization techniques in order to exploit computationally intensive al­
gorithms in the best possible way and mapping methods, which are able to
target the hardware complexity of todays technology.

• Scheduling and allocation techniques that enable a holistic treatment of par­
allelism at different levels with simultaneous consideration of resource con­
straints and different requirements on performance, power consumption, and
cost.

To overcome these very general challenges for arbitrary target architectures, we pres­
ent a domain­specific methodology for so­called processor arrays in this thesis instead.
The approach is focusing on computationally intensive algorithms with mostly reg­
ular and multi­dimensional data flow. The considered algorithms are expressed by
nested loop programs. A wide variety of algorithms from the areas of digital image
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(e.g., median filter, 2­D convolution, edge detection), video (for instance, motion
detection or motion compensation as in MPEG) and other signal processing (FIR,
IIR, Kalman, and many more filters, linear predictive coding, discrete Fourier trans­
form, etc.), linear algebra (matrix­vector multiplication, matrix multiplication, LU
decomposition, matrix inversion, solving linear systems, etc.), combinatorial prob­
lems (e.g., shortest path problems or transitive closure problems), and many other
scientific computing domains can be expressed by such loop programs. These pro­
cessor arrays are typically tailored to the requirements of just one algorithm. This
means, that the processors are not re­programmable for another application and
thus, we are referring to them as processing elements (PE) in the course of the the­
sis. The regularity of the algorithms is reflected by the resulting processor arrays,
whose structure corresponds to different levels of parallelism, memory, and control.
An example is shown in Figure 1.3, where in (a) a 2­dimensional iteration space is
visualized, which corresponds to a two nested loop. Each white point corresponds
to the execution of a number of operations within the loop body. The arcs denote
data dependencies between different iterations (also known as loop­carried dependen­
cies) and inputs/outputs, respectively. Based on a given specification, a dedicated
hardware accelerator should be implemented. Assuming that analysis of the perfor­
mance requirements, memory and I/O cost leads to a hierarchical partitioning of the
computations denoted by the two types of rectangles in Figure 1.3(a), then this par­
titioning corresponds to a hardware realization with two processing elements drafted
in Figure 1.3(b). The iterations within the white tiles T1 and T2 are processed by
the two elements PE1 and PE2. Once processing element PE1 has finished its ex­
ecution of the 16 iterations within tile T1, it continues with tile T3; just as PE2
proceeds with tile T4 after finishing its work on T2. Such a hierarchical approach is
not unusual since hereby communication cost can be traded for the cost of memory
on several levels [BCD94, EM99, Eck01, HKV+07, BKV+08]. The assignment of
iterations to processing elements can be seen as global allocation, but it scarcely says
something about the schedule. Similarly, types and number of functional units inside
the processing elements form a local allocation. Local and global control structures
orchestrate the interplay of processing elements and functional units, respectively.
For the considered class of algorithms, explictly defined execution orders and static
resource allocation are used in order to increase performance and to reduce cost.
Memory and interconnect structures can be generated according to the required de­
mands. Consequently, a customized hardware, dedicated to the acceleration of the
given loop program, is derived.

The term processor array is often associated equally with the term systolic array
[KL78]. The example in Figure 1.3, which considers several levels of allocation and
parallelism into account, is yet far beyond the concepts in systolic array design.

5
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Figure 1.4: The speedup (with respect to throughput), cost and power increase for
different 64­tap FIR filter implementations in relation to a sequentialized implemen­
tation, where only a single processing element with one multiplier and one adder is
available, is shown. The x­axis shows the number of available resources (multipliers
and adders), which is doubled from experiment to experiment. That means, in the
case of the processor array approach, the values on the x­axis correspond to the num­
ber of PEs, and in the case of loop unrolling, the values on the abscissa match the
unroll factor u.

As mentioned earlier, processor arrays are a powerful instrument to exploit par­
allelism on several levels. Whereas other high­level synthesis approaches often offer
no parallelization at all, or they use loop unrolling in order to achieve a higher data
throughput. The PARO synthesis tool [HRDT08], which has been developed within
the scope of this thesis, is able to perform both loop unrolling and the processor ar­
ray approach. Internally, it employs the same techniques for resource allocation and
scheduling, hence a fair quantitative comparison between the two approaches can
be performed. In Figure 1.4, such a comparison is shown for different 64­tap FIR
filter implementations. Although at this point of the thesis only briefly explained,
several experiments with different numbers of available resources were performed
and implemented in FPGA technology. The speedup characterizes the performance
gain with respect to the throughput for the FIR filter algorithm. The cost increase is
related to the gate count of the designs. In the single PE solution of the FIR filter,
the 64 iterations are executed sequentially within one PE. For this solution, both
throughput and cost are normalized to 1.0. Partitioning the algorithm to 2, 4, . . . ,
64 PEs theoretically also enables a higher throughput by the same factor. The super­
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Figure 1.5: Processor array architecture of the class of so­called weakly­programmable
processor arrays (WPPA) [HDK+05, KHKT06b]. In (a), the schematic array archi­
tecture and processor structure are depicted. A chip layout of a WPPA in 90 nm
standard cell technology is shown in (b).

linear speedup in case of the processor array implementations is due to the increasing
clock frequency for larger numbers of PEs. The moderate cost and power increase
is caused by the decreasing amount of intermediate data, which have to be stored
internally in the processor array. The results in terms of performance, area cost, and
power of the two approaches clearly advocate the processor array approach.

Dedicated hardware accelerators can always outperform standard embedded pro­
cessors in terms of performance and power consumption. Because of this, increas­
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1. Introduction

ingly more and more unconventional processors are emerging, which try to combine
the best of both worlds: The performance, cost and power efficiency of dedicated
hardware with the flexibility of programmable processors. These architectures typi­
cally consist of an array of reconfigurable, or to some extent programmable, coarse­
grained units for data processing, few distributed memory, and a tightly intercon­
nected communication network. An example of such an architecture is shown in
Figure 1.5(a). Shown is an array of simple VLIW processors, each having its own
small instruction memory and register file, however, with no shared memory access.
A reconfigurable, switched interconnect allows communication on cycle basis. The
parallelism of the architecture is expressed on different levels: several parallel work­
ing processors (loop­level parallelism), multiple functional units within one processor
(instruction­level parallelism), and software pipelining. From the structural point of
view, these programmable architectures are very similar to the dedicated processor
arrays derived by high­level synthesis. Thus, it would stand to reason that similar or
even the same concepts of algorithm modeling, allocation, and scheduling might be
used for both kinds of processor arrays (dedicated as well as programmable accelera­
tors).

1.1 Contributions and Bibliographic Notes

The dissertation’s primary contributions are in the fields of modeling and scheduling
and allocation techniques for high­throughput loop accelerators. The major achieve­
ment is a unified mapping methodology [DHT06d, DHT06c, DHK+07, THR+07,
HRDT08] for computationally intensive programs, that targets dedicated hardware
accelerators [HT01,RDHT05,DHT05,DHT+06e,DHT06b,DHT06a,DHRT07,
HRDT08,DHT08,HDT09,DHT09,KDH+09,DZHT09], special classes of coarse­
grained, reconfigurable architectures [HDT04a, HDT04b, HDT06, ESO+08], and
tightly­coupled, programmable processor arrays [HDK+05, KHK+06a, KHK+06b,
KHKT06a, KHKT06b, KHKT06c, KHK+06c, KHK+07, KKHT07, KHT07] and
[DKH+09, KHKT08, KSHT08, KSHT09]. The major contributations of this the­
sis are summarized briefly in the following. They, include advances in modeling,
parallelization, and scheduling as well as high­level synthesis.

Modeling. In order to map computationally intensive programs onto tightly­cou­
pled processor arrays in a systematic way, a profound mathematical model is essential.
In this context, a new class of algorithms called dynamic piecewise linear algorithms
[HT04b,HT04c,HRDT08] and a corresponding graph representation for modeling
iterative, multi­dimensional data flow is presented in the thesis. The class of dynamic
piecewise linear algorithms extends well­known models, that are based on systems of
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recurrence equations, defined over polyhedral iteration domains. Common to all
existing approaches is that data dependencies are assumed to be static. Dynamic
piecewise linear algorithms are able to model also a specific type of dynamic data
dependencies, that is, dependencies becoming known only at run­time. By this
enhancement, the range of applications with multi­dimensional data flow that can
be parallelized and mapped onto massively parallel processor arrays is significantly
increased. For instance, many computationally intensive applications for video and
image processing consist of nested loop programs with only few and simple run­time
dependent conditions.

On the basis of the class of dynamic piecewise linear algorithms, a novel program­
ming language is presented in the thesis. The language is called PAULA [HRT08,
HRDT08] and capable to model data flow dominated applications. It is intended
for designing highly parallel applications, expressing parallelism at instruction, data,
and loop level. The PAULA language allows very compact and efficient behavioral
descriptions and serves as design entry when generating dedicated hardware acceler­
ators [HRDT08], or might be used as high­level programming language for tightly­
coupled multi­processor architectures [KHKT06b, THR+07]. The language covers
a broad range of applications from the areas of digital image, video and other sig­
nal processing, linear algebra, cryptography, and many other scientific computing
domains, where efficient parallelization techniques and hardware accelerators are in­
dispensable.

Key features of the PAULA language are:

• A functional programming language dedicated to mapping computationally in­
tensive algorithms onto parallel, tightly­coupled processor architectures. A full
static single assignment form—also for multi­dimensional arrays—is provided.

• Powerful expressions to specify polyhedral and lattice iteration domains.

• Convenient usage of big operators such as
∑

or
∏

.

• Can handle run­time dependent control flow (support of dynamic piecewise lin­
ear algorithms).

• Besides behavioral description possibilities, also architectural modeling can be
considered.

• Its applicability has been demonstrated in real­world case studies.
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1. Introduction

Scheduling and Allocation. As mentioned earlier, allocation and scheduling are
the basic problems of high­level synthesis. However, scheduling with resource con­
straints can quickly become a hard combinatorial problem. In that case, often heuris­
tics are deployed or a hierarchical approach according to the different structural lev­
els is used. A hierarchical scheduling approach could lead to suboptimal results.
Consider for instance, that all operations of a loop body are scheduled first (local
schedule) and afterwards, a schedule for the iterations of a loop is determined (global
schedule). Even when overlapping the different iterations afterwards, this could be
worse compared to considering the instruction­level and the loop­level simultane­
ously as for instance in modulo scheduling [RST92]. Whereas modulo scheduling
deals only with single processors and one­dimensional data dependencies, in the pro­
cessor array approach we have to deal with arrays of processors, multi­dimensional
data flow, and maybe several partitioning levels (cf. Figure 1.3). Hence, if the exe­
cution of not all of these parallelism levels is interleaved, the performance loss might
accumulate.

In this dissertation, exact and holistic scheduling techniques are developed that
incorporate both, the local and the global allocation. By this close integration, per­
formance optimal schedules may be derived. In order to obtain these schedules, an
approach based on mixed linear integer programming (MIP) [NW99, HT01] is de­
veloped. In this thesis, the local schedule as well as the global schedule for several
levels of partitioning is optimized for the first time, simultaneously. As depicted in
Figure 1.3(a), the iterations within a white tile should be executed sequentially. In
this context, a new serialization constraint for MIP is presented that leads to better
schedules than existing approaches. The second main contribution in the area of
scheduling is the formulation of resource constraints that take the mutual exclusiv­
ity of iteration dependent conditions as well as of run­time dependent conditions into
account as shown in the following program fragment.

par (i >= 0 and i <= N-1)

{ // Equations with iteration dependent conditions

c[i] = a[i] * b[i] if (i == 0);

c[i] = a[i] * b[i] + c[i-1] if (i >= 1);

d[i] = c[i] > 255;

// Equation with run-time dependent condition

e[i] = ifrt(d[i], c[i], 255);

}

Shown is a PAULA program describing a dynamic piecewise regular algorithm. The
ifrt statement selects in dependence on the value of the Boolean variable d[i] if
the value of c[i] or the constant (255) is assigned to variable e[i].
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In the context of the algorithm classes based on multi­dimensional recurrence
equations, conditional scheduling [HT04a,HT04b,HT04d] has been applied for the
first time within this work in order to schedule run­time dependent conditions.

In addition, the MIP­based techniques have been extended by further constraints
to cope with the constraints induced by a given fixed size programmable processor
array (see Figure 1.5). These constraints consider local register constraints within the
processors such as different types and numbers of available registers, and channel
constraints of the communication structure such as the number of I/O ports of a
processor element.

A modular scheduling concept is presented that can also be combined with tech­
niques for channel routing [SMHT06, WKTH08c, WKTH08b, WKTH08a] and
subword parallelism [SMHT08].

In addition, a number of other results have been contributed, which are not exactly
in the scope of this doctoral thesis. These works include the following research areas:

• Methods for distributed loop control for non­rectangular processor array ar­
chitectures [BHT01, BHT02],

• Energy estimation and optimization for dedicated processor arrays, which are
obtained by projection as algorithm mapping [HT02a, HT02b, HT04a],

• High­speed simulation at register transfer level [KHT04b, KHT04a],

• I/O serialization for processor arrays [HT05],

• Defragmentation of the module placement in partially reconfigurable devices
[vFM+05],

• Symbolic feasibility testing during the design space exploration of heteroge­
neous multi­processor systems [SHHT05],

• Rapid and virtual prototyping of system­on­chip designs [KKH+06, LHT09],

• Acceleration of multiresolution imaging algorithms on graphics and Cell pro­
cessors [MKD+09, MHDT09].
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1.2 Organization of the Thesis

The thesis is organized as follows:
Chapter 2 reviews related work on modeling of structured computations and

considered algorithm classes in the polytope model, which are essential in the course
of the thesis. Subsequently, our achievement, a novel algorithm class that allows
to model recurrence equations with run­time dependent conditions, is presented.
Afterwards, an overview of languages for parallel programming is given. With this
background, the novel functional programming language PAULA, which is based on
the newly introduced algorithm class, is presented.

Chapter 3 presents contributations on scheduling and allocation of dynamic
piecewise linear algorithms. It provides the major methodological results of the the­
sis. Here, related work in the fields of allocation, loop parallelization, and schedul­
ing is presented first. Following, some basic definitions and concepts for mapping
nested loop programs are presented. After these fundamentals, a modular concept for
scheduling nested loop programs is conceived. The developed scheduling methods
are based on mixed integer programming.

Chapter 4 discusses how the information obtained during the allocation and
scheduling phases (Chapter 3) can be utilized in order to generate program code
for a given target architecture. The range of considered target architectures include
as well dedicated hardware accelerators as weakly­programmable processor arrays. In
this context, the PARO design system, which has been developed in the course of
the thesis, is briefly described. In addition, high­level synthesis approaches and tools
with emphasis on array processors are reviewed.

After this presentation of new scheduling techniques and the description of the
PARO design system, Chapter 5 provides several experimental results by applying
the new methods to different examples and a number of algorithms chosen from
different benchmarks. Furthermore, a comparison, in terms of performance, area
and power cost, of loop unrolling with our proposed method of loop partitioning
is given. A complex real world application for image processing is presented in this
chapter.

Finally, concluding remarks and directions of future work are presented in Chap­
ter 6.
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2Chapter 2
Modeling

Loops are the major source of parallelism in most programs. For instance, many
scientific and digital signal processing programs spend a large fraction of the overall
computing time in loops [Knu71,SMN+03]. In order to accelerate these applications
by use of parallel computation, either in software or hardware, loop parallelization
techniques are required.

In this chapter, a formalism of recurrence equations, introduced by Karp, Miller,
and Winograd [KMW67], is recapitulated, and related work on structured compu­
tations and algorithm classes in the polytope model [Len93,Fea96], that build upon
this formalism, are discussed. All these models render important contributions in the
area of loop parallelization, but have also limitations. Therefore, subsequently, our
achievement, a novel algorithm class that allows recurrence equations with run­time
dependent conditions, is presented.

Afterwards, an overview of languages for parallel programming is given. With
this background, we present a new functional programming language based on the
afore proposed algorithm class, which is tailored to our needs: The efficient specifi­
cation and parallelization of loop programs for mapping them onto processor array
architectures.
The main contributions of this chapter can be summarized as follows:

• Related work in the fields of structured computations, algorithm classes in
the polytope model (Section 2.1.1), and parallel programming languages (Sec­
tion 2.2.1) in general, are reviewed.

• The novel algorithm class of dynamic piecewise linear algorithms and a new
model for reduced dependence graphs is presented in Section 2.1.2 and 2.1.4,
respectively.

13
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• The PAULA language that reflects the properties of the class of dynamic piece­
wise linear algorithms and many further concepts, such as reductions and full
static single assignment form for multi­dimensional data flow, is presented in
Section 2.2.2.

2.1 Structured Computations and Algorithm Classes

in the Polytope Model

In 1967, Karp, Miller, and Winograd [KMW67] introduced in their seminal work
on structured computations, the notion of a system of uniform recurrence equations
and the concept of dependence graphs1. This concept provides a compact math­
ematical representation of the computations. In addition, the degree to which a
computation can be processed in parallel, is characterized. Karp and others studied
computation processes for solving partial differential equations by finite difference
methods. Later, recurrence equations were often used for the specification of so­
called systolic algorithms and arrays. The term systolic array dates back to Kung and
Leiserson [KL78]. In the field of medicine, systole describes the contraction of the
heart chambers, which presses the blood out of the chambers. Thus, a systolic array
is an analogy to the regular beating of the heart and the pumping of blood. Kung
and Leiserson themselves write in [KL78]:

A systolic system is a network of processors which rhythmically compute and
pass data through the system. Physiologists use the work ’systole’ to refer to
the rhythmically recurrent contraction of the heart and arteries which pulses
blood through the body. In a systolic computing system, the function of a
processor is analogous to that of the heart. Every processor regularly pumps
data in and out, each time performing some short computation, so that a
regular flow of data is kept up in the network.

Since the whole parallelism is explicitly given, a system of uniform recurrence equa­
tions is in this feature similar to the single assignment form of programming languages,
which are discussed in Section 2.2. The representation in single assignment form is
particularly suitable for algorithmic transformations and has the following proper­
ties:

• On each right hand side of an equation, an expression is given, which defines
the value of the variable standing on the left hand side of the equation (defi­

1Karp, Miller, and Winograd used the term dependence graph; but describe a folded graph that is
commonly referred to as reduced dependence graph.
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nition). Within the expression on the right hand side, other variables can be
used (usage).

• Each variable exists at most once in the algorithm on the left hand side of an
equation.

• For all specified equations in the algorithm, there exits a sequential execution
order. That is, an order can be found where each equation, that defines a
variable, appears before the usage of the variable.

• Variables that appear only on the right hand side of an equation, thus are only
used but not defined, form the set of input variables. The other way around,
variables, that are only defined but never used within the algorithm, form the
set of output variables.

The following fragment of an algorithm is in single assignment form and consists of
four statements. The variables a and b are input variables since they are only used.
Similar, d and f are output variables since they are only defined.

c = a− 3

d = b + (c/10)

e = b · c

f = 2e + (c − b )

The formalism of systems of uniform recurrence equations has been used in many
works. Over the years, this formalism evolved by concepts such as affine dependen­
cies or piecewise definitions. In their original works, sometimes the authors precisely
define a new structured algorithm class and give a name to it. At other times, the
authors slightly modify or simplify the details of the structure. A detailed survey
of different classes of structured computations and algorithms is given in [Zeh96].
In the following section of related work, classes of structured computations are dis­
cussed, that can be found in literature quite frequently or that are of interest for this
thesis.

2.1.1 Related Work

Uniform Recurrence Equations. As stated before, in 1967, for modeling and for
understanding regular and iterative processes, Karp and others [KMW67] intro­
duced the concept of a system of uniform recurrence equations (SURE). Here, the
authors consider problems associated with the evaluation of a system of k functions
a1(I ), a1(I ), . . ., ak(I ). Each function ai (I ), i ∈ [1..k] is quantified for all points
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2. Modeling

I ∈ I, where I is an integral subset I ⊆ Zn. The values of a1(I ),a1(I ), . . . ,ak(I ) have
to satisfy a system of k recurrence equations having uniform dependencies. First, we
consider the case k = 1 in order to explain a uniform dependency. A single recurrence
equation is of the form

a1(I ) =F1(a1(I − d1),a1(I − d2), . . . ,a1(I − dk)),

where I ∈ I, d j , j ∈ [1..k] is an n­dimensional integer vector called iteration vector,
and F1 is a single­valued function. Any difference I − d j is element of Zn and each
vector d j is constant, thus the equation is said to have uniform dependencies. With
this, a system of uniform recurrence equations is generally given by

ai (I ) =Fi (ai1
(I − di1

),ai2
(I − di2

), . . . ,aik
(I − dik

)).

An example for I ∈Z is defined by the following system of equations:

a1(I ) =F1(a2(I ),a3(I − 1))

a2(I ) =F2(a1(I + 1),a1(I − 2),a3(I ))

a3(I ) =F3(a3(I − 1))

Karp and others also studied the computability of SUREs [KMW67]. The com­
putability of a SURE can be determined by whether there is a cycle of zero weight in
the reduced dependence graph.

In the following and throughout the rest of the thesis, we use a slightly different
terminology when considering recurrence equations. Namely, instead of functions
ai (I ), indexed variables xi[I ] are considered. Equations are quantified, that is, an
equation defines the indexed variable on its left hand side for each value of the it­
eration vector I . The set I ⊆ Zn of possible values of I is called iteration space.
According to this, a uniform algorithm consists of a set of equations, that relate lin­
early indexed variables. In general, we write

xi[I ] = fi (xi1
[I − di1

], xi2
[I − di2

], . . . , xik
[I − dik

]) ∀I ∈ I

with I ⊆ Zn, di j
∈ Zn, j ∈ [1..k], any difference I − di j

∈ Zn, and fi is an arbitrary
function. For example,

a[i , j ] = a[i , j − 1]

b[i , j ] = add(a[i , j ], b[i − 1, j ])

c[i , j ] =mul(b[i , j ], b[i , j ])

where the system of equations is defined for all i and j in I = {(i j )T ∈ Z2 | 1≤ i ≤
10 ∧ 2 ≤ j ≤ 8}. Often, all data dependencies di , 1 ≤ i ≤ k are combined in one
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dependence matrix D = (d1 d2 . . . dk). For the above example, the following depen­
dence matrix would result, if the variables on the right hand side of the equations are
considered top down.

D =

�

0 0 1 0 0
1 0 0 0 0

�

The importance and versatile applicability of SUREs is studied in a multitude of
works. Examples of these include the work of Quinton [Qui84], Delosme and
Ipsen [DI85, DI86], Schwiegelshohn and Thiele [ST87a, ST87b, ST88], Djamegni
[Dja04, Dja06], and many further works [XL91, KR06, OSY06, DQR+09] for the
implementation of systolic arrays and asynchronous architectures [EJP92]. Some au­
thors [SF91] even focus only on uniform algorithms that consist of a single equation.
SUREs serve not only as basis for the synthesis of systolic arrays but are also used for
other parallel models of computation. For instance, the authors in [GJM00] use
SUREs for computing the minimal memory size in a PRAM (parallel random access
memory) model. In [HOPS05], SUREs are used for the generation of parallel algo­
rithms for cluster and grid computing. Schaffer et alii start from SUREs to exploit
architectures with sub­word parallelism [SMC03, SSM06, SM06a, SMC06].

Systems of uniform recurrence equations also form the basis for the high­level
synthesis tool PICO­NPA [SAM+02] (further details follow in Section 4.1.1.2).

Regular Iterative Algorithms. The class of regular iterative algorithms (RIA) is
a continuation of the SUREs, shaped by Rao in [Rao85]. The first extension is
that, each quantified equation might be assigned a further restriction of its iteration
domain. This restriction is defined by one, or a set of inequalities (intersection of
half spaces) and is referred to as iteration dependent condition in the following.

Definition 2.1 (Iteration dependent condition). A condition CI(I ) is called iteration
dependent condition of an equation and can be equivalently expressed by I ∈ I

C
⊆Zn,

where the space I
C

is an iteration space called condition space.

In addition, the iteration variables on the left hand side of an equation can have an
offset and the iteration space I is required to be convex. Then, each equation i is
defined for all I ∈ I as follows.

xi[I + f ] =Fi

�
x1[I − d1i], x2[I − d2i], . . . , xk[I − dki]

�
if C

I
i
(I )

In Example 2.1 the matrix multiplication of two square matrices (C = A · B) is
described by a regular iterative algorithm.
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Example 2.1.

a[i , j , k] = ai k if j = 1

b[i , j , k] = bk j if i = 1

a[i , j + 1, k] = a[i , j , k] if j <N

b[i + 1, j , k] = b[i , j , k] if i <N

c[i , j , k] = a [i , j , k] · b [i , j , k] if k = 1

c[i , j , k] = c[i , j , k − 1]+ a [i , j , k] · b [i , j , k] if k > 1

ci j = c[i , j , k] if k =N

Many related work in the fields of loop parallelism [RK90, HH95] and data­path
synthesis [AC94] is based upon this algorithm class. For further literature about the
class of regular iterative algorithms, we refer to the overview in [RG06].

Piecewise Linear Algorithms and Piecewise Regular Algorithms. The class of
piecewise linear algorithms (PLA) has been defined by Thiele and Roychowdhury in
[TR91]. This class extends the notation of regular iterative algorithms. A piecewise
linear algorithm consists of a set of N quantified equations, S1[I ], . . . , Si[I ], . . . , SN [I ].
Each equation Si[I ] is defined for all I ∈ Ii and is of the following form.

xi[Pi I + fi] =Fi (. . . , x j [Q j I − d j i], . . .) if C
I
i
(I )

where xi , x j are affinely indexed variables. The so­called indexing functions of the
variables are defined by the constant rational indexing matrices Pi , Q j and by the
constant rational vectors fi , d j i of corresponding dimension. Fi denote arbitrary
functions and the dots (. . .) denote similar arguments. I ∈ Ii ⊆ Z

n is a linearly
bounded lattice (definition follows), called iteration space of the quantified equation
Si[I ]. The set of all points Pi I + fi , I ∈ {Ii ∩ C

I
i
(I )} is called the index space of

variable xi .
A piecewise linear algorithm is called piecewise regular algorithm (PRA) [Thi88],

if the matrices Pi and Q j are the identity matrix.
An algorithm is in output normal form if Pi is the identity matrix and fi is the

zero vector.
These algorithm classes have been extensively studied by Teich and Thiele for the

design of processor arrays [TT91, Thi92, Tei93]. A similar algorithm class, also able
to handle affine data dependencies, is known as system of affine recurrence equations
(SARE) [YC88, YC92, WS94, MP01].

Note that the transformation, maybe automatically, of affine data dependencies
into uniform dependencies is called localization. Amongst others, localization tech­
niques have been studied in the following works [TR91, Tei93, MMRR01, Eck01,
MM04] and our work in [HT05].
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It should be noticed, that many authors (for instance, [FM98,SMC00,MFMS03,
GQR03, SM06b, SM06c, SM06d]) use the term SURE even if, according to the
above taxonomy, RIAs or PRAs are meant.

Further Algorithm Classes. Roychowdhury and others introduced in [RTRK88]
so­called linearly indexed weak single assignment codes. Here, the main novelty is the
possibility to consider a generic operator on the right hand side of the equations. The
operator is required to be associative and commutative, and is defined over several
iterations. Examples of such operators are reductions, as for instance, summations
or multiplications. This algorithm form is used for example by Eckhart in [EM99],
although later he called this class affine indexed algorithms [Eck01].

Eventually, none of the aforementioned algorithm classes is powerful enough to spec­
ify dynamic data dependencies. This means, that branching of the program execution
cannot depend on already computed variables. Only few results exist that incor­
porate specific run­time decisions. With regards to the loop bounds, the authors in
[GGL99] propose an approach, which can handle while­loops. The method has been
integrated in the parallelizing compiler LooPo [GL96]. In [Meg93] and [AR94], the
authors study also a class of run­time dependencies. Their work studies dynamic
programming for knapsack problems by consideration of indirect addressing. Fur­
thermore, the authors show how optimal systolic array­like implementations can be
derived. In [SD03,Ste04], the authors present a method to derive a so called dynamic
single assignment code (dSAC), based on fuzzy array data flow analysis [CBF95]. The
difference compared to single assignment code, where every left hand side variable is
written exactly once, is, that in dSAC every variable is written at most once. That
means, at compile­time, it is unclear whether a variable will be defined during the
program execution.

2.1.2 Dynamic Piecewise Linear/Regular Algorithms

In order to consider and systematically map not only algorithms with iteration de­
pendent conditions, which are static and known at compile time, in the following,
we extend the algorithm class to allow for run­time dependent conditions.

Definition 2.2 (Run­time dependent condition). A run­time dependent condition
is a Boolean variable CRT[I ] of the form

C
RT[I ] =F

C
(. . . , x j [Q j I − d j ], . . .)

where F
C

denotes an arbitrary Boolean­valued function involving constants and linearly
indexed variables only.
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Typically, the function F
C

of a run­time dependent condition describes a relational
operator such as =, >, ≥, <, ≤, or, 6=.

Definition 2.3 (Dynamic Piecewise Linear/Regular Algorithms [HT04b]). A dy­
namic piecewise linear algorithm (DPLA) is a PLA where the following extended type
of equations expresses run­time dependent definitions of computations as follows:

xi[Pi I + fi] =

¨

F 1
i
(. . . , x j [Q j I − d j i], . . .) if (CI

i
(I ) ∧ CRT

i
[I ])

F 0
i
(. . . , xk[Qk I − dki], . . .) if (CI

i
(I ) ∧ ¬CRT

i
[I ])

The notation ¬CRT
i
[I ] denotes the negation of the run­time dependent condition CRT

i
[I ],

which is similar to the else­branch of an if­condition. We introduce intermediate variables
x1

i
[Pi I + fi] = F 1

i
(. . .) and x0

i
[Pi I + fi] = F 0

i
(. . .) to express the conditional definition

of xi[Pi I + fi]. A DPLA is called dynamic piecewise regular algorithm (DPRA) if the
matrices Pi , Q j , and Qk are the identity matrix.

Note that by this definition we can strictly partition each condition into an iteration
dependent condition and a run­time dependent condition (separability). Because of
both, the run­time dependent condition (CRT

i
) and the negated run­time dependent

condition (¬CRT
i

), the variable on the left hand side of an equation is defined when­
soever CI

i
(I ) is fulfilled and thus, the computability property of a program remains

satisfied. The definition of a variable in either case is the main difference compared
to the approach presented in [SD03,Ste04] where not both cases have to be defined.

For illustration, two small examples are given. The first is a DPRA and the second
describes a DPLA. The iteration space is omitted in each case.

Example 2.2.

x[i] =

(

2 · cos(y[i−1])

sin(x[i−1])
if (x[i − 1] 6= 0)

∞ if (x[i − 1] = 0)

Example 2.3.

x[i , j ] =

¨

x1[i , j ] if (CRT[i , j ] ∧ (i > 0 ∧ j ≤ 3))
x0[i , j ] if (¬CRT[i , j ] ∧ (i > 0 ∧ j ≤ 3))

x1[i , j ] = y[i , j ] · z[2i − 1, j ]

x0[i , j ] = y[i , j ]

C
RT[i , j ] = (z[2i − 1, j ]> 1)
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2.1.3 Iteration Spaces

So far, the possible domains of definition for the algorithms have not been formal­
ized, except that we stated sometimes these iteration spaces have to be convex or an
n­dimensional integral set. Formally, an iteration space is defined as follows.

Definition 2.4 (Iteration space). An iteration space I is a set. Its elements are valid
values for an index vector I . The iteration space is a discrete—not necessarily finite—set.

Throughout this thesis, we assume that the iteration space I is an n­dimensional
subset of integers, I ⊂ Zn. Often, the terms iteration space and index space are used
synonymously, however, we distinguish between the terms. The iteration space is
the domain I whereas the index space denotes the codomain when transforming the
iteration space by an index function.

In loop programs, the iteration space is defined by the loop bounds. The itera­
tion variables are generally increased or decreased by a constant value (regularity of
the iteration space). If the loop programs are perfectly nested 2, the iteration spaces are
convex. Each loop bound defines a half space and the intersection of all half spaces
describes a polyhedron or in case of boundedness a polytope. Loop parallelization in
the polytope model is a powerful technique [Len93, Fea96], therefore in the follow­
ing, the iteration spaces are formulated as polyhedra or even more general as so­called
linearly bounded lattices.

Definition 2.5 (Linearly bounded lattice [Tei93]). A linearly bounded lattice (LBL)
denotes an iteration space of the form

I = {I ∈Zn | I =Mκ+ c ∧ Aκ≥ b}

where κ ∈ Zl , M ∈ Zn×l , c ∈ Zn, A∈ Zm×l and b ∈ Zm . {κ ∈ Zl | Aκ ≥ b} denotes
the set of integral points within a convex polyhedron or in case of boundedness within
a polytope in Zl . This set is affinely mapped onto iteration vectors I using an affine
transformation (I =Mκ+ c).

In [Tei93], it is shown that each set I ⊆ Zn can be described as an LBL. Although
this is an interesting result, at the same time, this possible generality, to represent
an arbitrary n­dimensional, integral point set, could make the treatment of a given
algorithm very complicated and inefficient. Thus, throughout the thesis, we assume
that the matrix M is square and of full rank. Then, each vector κ is uniquely mapped
to an iteration point I .

Often, when the lattice matrix M is the identity matrix and the vector c is zero,
the iteration space coincides with the following definition of a polyhedron.

I = {I ∈ Zn | AI ≥ b}

2A loop nest is called perfectly nested if only the innermost loop contains statements.
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2.1.4 Dependence Graphs

Another, geometric approach for modeling single assignment algorithms, is the rep­
resentation by a dependence graph. For each variable instance at each iteration point
I ∈ I, there exists one node. Dependencies from one node (variable) to another are
denoted by an edge in the graph. In detail, if there exists an edge from a node a[J ] to
a node b[K] with J ,K ∈ I, then b[K] needs the result of a[J ] for its computation.
Thus, a dependence graph expresses a partial order between the different operations
of the algorithm. Since the iteration space of an algorithm can be arbitrarily large,
also the graph can be arbitrarily large. If algorithms with uniform data dependencies
are considered, the dependence graph is also regular and can be folded to a reduced
dependence graph [Rao85, Thi88].

Definition 2.6 (Reduced dependence graph). Let a uniform algorithm in output nor­
mal form be given with I ⊆ Zn. Then a corresponding reduced dependence graph
(RDG) G = (V , E , D) of dimension n has the following properties. There exists a set V
of nodes and a set of edges E ⊆ V ×V . For each variable xi of the algorithm exists one
node vi ∈V in the RDG. In addition there exists a mapping E 7→D that assigns to each
edge e = (vi , v j ) ∈ E an n­dimensional dependency vector di j ∈ Z

n if a variable x j of
the algorithm depends on a variable xi of the algorithm.

As example, an algorithm for IIR filtering is considered, that is used for speech anal­
ysis and synthesis with linear predictive coding (LPC) [PM06].

Example 2.4.

z[i , j ] = a[i , j ] · x[i − 1, j − 1]

b[i , j ] = a[i , j ] · c[i , j − 1]

c[i , j ] = c[i , j − 1]+ z[i , j ]

x[i , j ] = x[i − 1, j − 1]+ b[i , j ]

where the iteration space is defined by I = {(i j )T ∈ Zn | 1≤ i ≤N ∧ 1≤ j ≤M}.

The reduced dependence graph of the algorithm in Example 2.4 is shown in Fig­
ure 2.1. Variables that depend on the same iteration have a zero dependency vector
and are not annotated to the edges.
The unfolded dependence graph is shown in Figure 2.2, where the upper bounds of
the iteration space are chosen to be N = 6 and M = 4. The regularity of the algorithm
is clearly visible. The concepts of RDGs and uniform algorithms are closely related to
each other. However, with Definition 2.6 of an RDG, it is not possible do describe
algorithms that go beyond the concept of uniform recurrence equations. Thus, a
more general definition is necessary.
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Figure 2.1: Reduced dependence graph of the LPC algorithm given in Example 2.4.
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Figure 2.2: Dependence graph of the LPC algorithm for N = 6 and M = 4.

Definition 2.7 (Reduced dependence graph (extended)). Let a dynamic piecewise lin­
ear algorithm be given. Then each node v ∈V of the corresponding reduced dependence
graph (RDG) G = (V , E) might have several 3 of the following types.

• Normal: For each indexed variable on the left hand side of the algorithm, one node
of type normal exists in the graph.

• Constant: For each constant within the algorithm, one node of type constant exists
in the graph.

• Input: Variables that are only used in the algorithm or rather nodes that are only
used in the graph are of type input.

• Output: Similar to the input type. Nodes, that are only defined but not used in
the graph are of type output.

3For instance, a node might be a merge node as well as an output node at the same time.
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• Propagation: Similar to the normal type but no function or operation is associated
to the node, only a copy operation/propagation.

• Condition: To denote a run­time dependent condition C RT.

• Merge: A node to merge the data flow again after it was split up into different
branches.

Also different edge types exist.

• Normal: An edge that denotes a data dependency from one node to another node.

• Constant: An edge that denotes the usage of a constant.

• Conditional: This type is used for outgoing edges of a node of type condition.

• Serialization: Denotes an artificial serialization between two nodes. That means,
the serialization is not directly included in the originally given algorithm descrip­
tion but was added afterwards.

To each node of type normal, input, output, or propagation further attributes are asso­
ciated. Namely, the iteration domain it is defined for and the indexing function of the
variable. Moreover, a unique identifier, the variable name, and its functionality are
annotated.

To each edge of type normal, the corresponding indexing function is annotated. Com­
pared to the traditional definition of an RDG (cf. Definition 2.6), this also allows to
represent affine data dependencies.

For illustration, the following example of an algorithm for matrix multiplication,
consisting of six equations (S1 to S6), is considered.

Example 2.5.

S1 : a[i , j , k] = ai n[i , k] if j = 1

S2 : a[i , j , k] = a[i , j − 1, k] if j > 1

S3 : z[i , j , k] = a[i , j , k] · bi n[k , j ]

S4 : c[i , j , k] = z[i , j , k] if k = 1

S5 : c[i , j , k] = c[i , j , k − 1]+ z[i , j , k] if k > 1

S6 : cout[i , j ] = c[i , j , k] if k =N

with I = {(i j k)T ∈ Z3 | 1≤ i , j , k ≤N} as iteration space.
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Figure 2.3: Reduced dependence graph for the matrix multiplication algorithm in
Example 2.5

The corresponding RDG is shown in Figure 2.3. Here, different node types have
different colors, input nodes are blue, output nodes are red, normal nodes are white,
and propagations are colored gray. The distinction in terms of color between normal
nodes and propagations only serves for better visibility in order to distinguish actual
computations from propagations/assignments quickly. As can be seen, not all vari­
ables have to be embedded in the same dimension. For instance, the input variables
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ai n and bi n as well as the output variable cout are only two­dimensional, whereas
all other variables are three­dimensional. Note that this characterization possibility
also allows to model piecewise defined algorithms and even parallel/communicating
loop programs defined over different iteration spaces. This is a substantial difference
compared to traditional approaches where the algorithm has to be embedded in a
common global iteration space, which is derived by the convex hull of the union of
iteration subspaces.

The next program fragment, in Example 2.6, depicts a dynamic piecewise regular
algorithm, consisting of seven equations (S1 to S7).

Example 2.6.

S1 : C RT[i] = (x[i]> 7)

S2 : a[i] =

¨

a1[i] if (CRT[i])
a0[i] if (¬CRT[i])

S3 : a1[i] = x[i]+ 3

S4 : a0[i] = x[i] · 5

S5 : b[i] =

¨

b 1[i] if (CRT[i])
b 0[i] if (¬CRT[i])

S6 : b 1[i] = a[i] · a[i]

S7 : b 0[i] = a[i]+ 4

with the LBL I = {i ∈Z | i = 2κ+ 1 ∧ 1≤ κ≤ 10} as iteration space.

The corresponding RDG is illustrated in Figure 2.4. In this figure, constant nodes
are colored green, conditions are colored orange, and merge nodes are shown in
yellow. The results of the condition (Boolean value) are drawn as red edges to the
merge nodes in order to select the right input.

2.2 Languages for Parallel Programming

Languages for parallel programming have a long tradition in parallel and high perfor­
mance computing, but also when considering digital signal processing and data flow
computing. The following section about related work gives only an overview with an
emphasis on functional languages for data flow intensive and streaming applications.

2.2.1 Related Work

As mentioned in the introduction, there is a continuous trend to higher abstraction
levels and the usage of high­level languages for the design of embedded digital sys­
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Figure 2.4: Reduced dependence graph of the DPRA given in Example 2.6.

tems. However, starting with a sequential language such as C, C++, or SystemC has
the disadvantage that their semantics force a lot of restrictions on the execution or­
der of the program. Most of the parallelism contained in the original mathematical
model of the algorithm is lost during the transformation to sequential code. For
instance, a simple summation s =

∑7
i=0

a[i] is often written in C as a for loop in the
following manner:

int s = 0;

for (i=0; i<=7; i++) { s += a[i]; }

By this, a sequential order is already predefined and a later parallelization can be­
come a crucial task. In Figure 2.5, the difference between a sequential and a parallel
implementation shall be demonstrated. Granted that enough resources (adders) are
available, the latency might be reduced from linear to logarithmic run­time. The
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a[0] a[1]
a[2]

a[3]
a[4]

a[5]
a[6]

a[7]

s
s

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Figure 2.5: Sequential and parallel implementation of a sum consisting of eight
summands.

mapping of such algorithms to massively parallel architectures requires data depen­
dency analysis in order to make the inherent parallelism explicit. Still, this process
is very complex, since sequential languages allow, that variables, once defined, can
be overwritten arbitrarily. Another disadvantage of C­based hardware design is that
most design tools support only a limited subset of the language. Porting existing,
highly optimized C code to such an environment is a time consuming task and often
ends in completely rewriting the code from scratch. In order to avoid this, modern
software compilers like gcc [GCC09] as of version 4 or LLVM [LA04] use a so­called
static single assignment (SSA) form as intermediate representation, where each variable
is written exactly once. SSA allows the application of manifold compiler optimiza­
tions and transformations in a very efficient way. But since the SSA form is used only
in the intermediate representation (basic block level), these compilers cannot solve
the data dependence analysis problem for multi­dimensional arrays.

Thus, starting from a parallel programming language is advantageous. For the
sake of completeness, the most popular languages for data parallelism and shared
memory systems, namely High Performance Fortran (HPF) [Hig93] and C* [RS87]
should be mentioned. HPF is based on Fortran 90 with extensions for parallel com­
puting (for example, FORALL­statements) and data layout. The language C* is an
extended version of C, which includes domains and reduction operators. Today,
in most application domains, C* as well as HPF are being replaced by OpenMP
[CJP07].

2.2.1.1 Languages for Functional Programming and Loop­Level Parallelism

Another option is to directly start from a functional language such as Id [Nik93],
Haskell [Tho99], or Sisal [GDF+01]. Sisal allows recursion and finite streams. It
was derived from VAL [McG82], a function­based language designed for data flow
computers. Sisal and Id can be classified as shared memory parallel programming
languages. Because of many similarities between Id and Haskell, it was a founda­
tion for pH, a parallel dialect of Haskell. However, Haskell also has only restricted
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abilities to handle true multi­dimensional arrays (that means, arrays in which every
dimension is treated as equivalent) [Tho99]. All these languages have been mainly
designed for programming shared memory systems.

2.2.1.2 Message Passing Languages

The basic concept of message passing languages requires the programmer explicitly
to partition tasks and data. An example of a message passing language is CSP (com­
municating sequential processes), presented by Hoare in [Hoa78]. CSP is used for
describing the interaction of processes in parallel systems. For this purpose, CSP
programs are formulated as a parallel composition of several sequential processes,
communicating with each other through synchronous message passing. Later, CSP
has been mathematically refined in a process algebra. Today, several implementations
in other languages such as Java, C++, and Haskell exist [Hoa85].

A concrete early adaption of CSP has been used in Occam [May83, Inm84], a
concurrent programming language targeting transputer microprocessors [MS90].

Sometimes, MPI (message passing interface) [SO98] is also referred to as a mes­
sage passing language, which is wrong since MPI is a language­independent commu­
nications protocol. It offers an application programmer interface for writing parallel
programs for distributed memory systems.

2.2.1.3 Streaming Languages

In recent years, more and more streaming applications in many fields, such as mul­
timedia, graphics, and other digital signal processing areas have emerged, and the
number of new streaming languages is constantly growing. Streaming languages have
the advantage, that they are closely related to data flow graphs, in which computa­
tions are represented by nodes and communications by edges. By this, concurrent
implementations can be derived more easily, as opposed to starting from a sequential
language and subsequent parallelization.

Examples of recent streaming languages, targeting graphics and other multi­core
architectures include StreamIt, Spidle, Brook, Baker, SPUR, StreamC, CUDA, Cg,
and SPEX, which are shortly discussed in the following.

Amarasinghe and others propose a language for streaming applications called
StreamIt [TKA02], which is based on the model of synchronous data flow (SDF).
StreamIt offers a structured model of streams, a messaging system for control, and
re­initialization mechanisms [TKA02]. Remarkable, is the wide variety of studied
target architectures starting form standard uniprocessor systems to multi­core archi­
tectures such as RAW [GTA06], the Cell Broadband Engine Architecture [Zha07],
graphics processing units, and FPGAs [HKM+08].
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Spidle [CHR+03] is a high­level language for declarative programming of stream­
ing applications in the domain of digital audio processing.

Brook [BFH+04] is a high­level language intended for programming graphics
hardware both from NVIDIA and ATI. The language is imperative with explicit
constructs for streaming structures, abstractions for the memory access, data­parallel
operations executed on the graphics processors (GPU) as calls to parallel functions,
and many­to­one reductions.

In [CLL+05], the authors use Baker, a domain specific C­like high­level language,
for the design of modular applications for Intel’s IXP2400 network processor.

The authors in [ZLSL05] propose the SPUR programming model for a novel
media processor with programmable vision coprocessor. The language is divided
into a high­level and a low­level part. The low­level part describes sequences of
operations that work on a stream, whereas the high­level part of the language is
intended for describing the skeleton of a program, also known as the control flow.

StreamC [DDM06] is a C++ extension for defining high­level control and data
flow in stream programs. The computation kernels themselves have to be defined in
KernelC [DDM06], a language with limited C­like syntax.

CUDA [LNOM08] is a C­based parallel programming language for NVIDIA’s
graphics and Tesla architectures. A programmer has to write a sequential program
that calls parallel kernels, which can be simple functions or programs. The compiler
ensures that the sequential code is executed on the CPU of the host system and that
parallel kernels are computed by a set of concurrent threads on the GPU. Another
older approach, also from NVIDIA, is Cg [MGAK03] a C­like language, specifically
for programming computer graphics and high­level shading. It offers support for
both major 3D graphics APIs: OpenGL and DirectX.

OpenCL (Open Computing Language) [Khr08] is a recent parallel programming
language with emphasis on computer graphics. OpenCL is based on the language
C and is extended by functions and data types for the parallel execution of applica­
tions. The OpenCL execution model supports data and task parallel programming
models, as well as hybrids of these two models [Khr08]. It is intended for vari­
ous types of parallel systems, including high­performance compute servers, desktop
computer systems, and handheld devices. In order to support a broad range of pro­
cessors and heterogeneous architectures, such as multi­core CPUs, GPUs, Cell­type
architectures, and DSPs, various memory types are available.

Index spaces in CUDA and OpenCL are limited to a maximum dimension of
three. There exist only few streaming languages for arbitrary multi­dimensional data
flow. One example is SPEX [LCM+08], a language extension applied to C++. How­
ever, many features of the C++ language are not supported.
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2.2.1.4 Visual Programming Languages

Visual programming languages allow the formulation of a program by entering pro­
gram elements graphically rather than by specifying them textually. Most visual
programming languages are based on graph models. Thus, their basic elements are
nodes or boxes connected by arrows. Well­known examples of visual programming
languages include Click [KMC+00] for packet processing applications, Simulink
[DH01] for modeling and simulation of dynamic systems, and Ptolemy II [LN07],
which allows to couple different models of computation. For an overview of older
graphical data flow languages, we refer to [LP95] and [Hil92].

2.2.2 The PAULA Language

PAULA is a domain­specific functional programming language, dedicated for map­
ping computationally intensive algorithms onto parallel tightly­coupled processor
architectures with local distributed memory. The class of algorithms that can be
expressed by a PAULA program is based on the mathematical model of dynamic
piecewise linear algorithms (see Section 2.1.2). That means, the language can handle
run­time dependent data flow to a certain degree. In addition, the language contains
constructs that go beyond the concepts of DPLAs, for instance, the convenient usage
of big operators (reductions) such as

∑
.

As described before, a DPLA consists of a set of recurrence equations. For in­
stance, when modeling signal processing algorithms, a designer naturally considers
mathematical equations. Hence, the PAULA language is very intuitive. A program
is thus a system of quantified equations that implicitly defines a function of output
variables in dependence of input variables.

The language provides a full SSA form, also for multi­dimensional arrays. Com­
pared to other functional languages, PAULA has powerful expressions to specify
polyhedral and lattice iteration domains. Finally, besides behavioral description pos­
sibilities, also architectural modeling and constraints can be considered. For this
purpose, a program described in PAULA may be divided into two major parts: A
part for the behavioral description and a part for the architectural description. Thus,
at first, in Section 2.2.2.1 the syntax and semantics of the behavioral part are de­
scribed. In Section 2.2.2.2, the architectural part of the language is discussed.

2.2.2.1 Behavioral Description

Several semantical properties have to be considered by the programmer when speci­
fying an algorithm in the PAULA language. Single assignment property: Any instance
of an indexed variable appears at most once on the left hand side of an equation.
Computability: There exists a partial ordering of the equations such that any instance
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Algorithm 1: Example PAULA program (FIR filter)
program FIR

{

// Type alias definitions

typealias coeff_t signed fixed<12,11>;

typealias input_t signed fixed<16,15>;

typealias product_t signed fixed<28,26>;

typealias output_t signed fixed<36,26>;

// Variable declarations

variable A 1 in coeff_t;

variable U 1 in input_t;

variable Y 1 out output_t;

variable a 2 coeff_t;

variable u 2 input_t;

variable x 2 product_t;

// Parameter declarations

parameter N;

parameter T;

// Program blocks

par (i >= 0 and i <= T-1)

{ // Nested program blocks

par (j >= 0 and j <= N-1)

{ // Equations

a[i,j] = A[j];

u[i,j] = U[i-j] if (i-j >= 0);

u[i,j] = 0 if (i-j <= -1);

x[i,j] = a[i,j] * u[i,j];

}

// More equations

Y[i] = SUM[j >= 0 and j <= N-1](cast<output_t>(x[i,j]));

}

}

of a variable appearing on the right side of an equation appears earlier in the left hand
side in the partial ordering. If the two aforementioned properties are respected, the
following architecture independent execution model can be considered4. A program

4The PARO synthesis tool, which is described in Section 4.2, offers two methods for checking
the single assignment property and computability, respectively. The first method investigates charac­
teristics of the indexing functions and can be applied to regular algorithms. The second method can

32



Languages for Parallel Programming

may be executed as follows: (1) All instances of equations are ordered respecting the
above defined partial ordering. (2) The indexed variables are determined by succes­
sive evaluation of equations.

In order to enable the synthesis of dedicated hardware accelerators or the map­
ping onto tightly­coupled multi­processor architectures, the mathematical model of
DPLAs have been extended by several constructs. Algorithm 1 shows an example
program that describes an FIR filter. The individual language elements are described
in the subsequent sections.

Programs. The key element of the PAULA language is the program. Every program
starts with a program header that contains the program name. The header is followed
by a declarative part that includes type alias definitions and declarations of variables
and parameters in an arbitrary order5. After the declarations, there can be one or
more so called program blocks, which are described in detail in Section 2.2.2.1.

Declarations. PAULA supports many different, parameterized data types, for ex­
ample signed integer<32>, which is a signed integer with a width of 32 bits.
Several other integer, Boolean, fixed, and float data types are also supported. More­
over, the language could easily be extended by other data types. In order to keep
a program readable and to reduce the effort when types of several related variables
need to be changed, one may define aliases for existing data types. For example, the
above mentioned FIR filter program uses type aliases for the data types of the fil­
ter coefficients, input, and output samples. This obviously increases readability and
also helps to avoid mistakes when changing data types. If, for example, the width
of the output data should be changed, only the typealias statements have to be
modified, and there is no danger of forgetting to also update the type cast in the last
equation of the program (Y[i] = SUM...cast<output_t>). The syntax of the
typealias statement is the following:

typealias alias_type existing_type;

Example:

typealias input_t signed fixed<16,15>;

also be applied to algorithms with affine dependencies. However, in order to validate the properties,
the entire algorithm has to be simulated in this case.

5In contrast to C, there are different name spaces for each kind of identifiers. So it is no problem
to have a variable and a function that both have the name ”foo”. It is always clear from the context
whether an identifier denotes an indexed variable, an iteration variable, a function or a data type.
However, in order to improve readability, it is strongly recommended to use distinct identifiers for
variables, iteration variables, and so on.
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Like in many other programming languages, the PAULA language requires variables
to be declared before they can be used6. The syntax of such a declaration is the
following:

variable name dimension [in|out] datatype;

Variables can either be declared as input variables using the in keyword, output
variables when the out keyword is present, or normal (internal) variables when nei­
ther in nor out is given. The name of a variable is an arbitrary identifier. The
dimension of a variable must be a positive integer, datatype can either be one
of the built­in types or a type alias. Example:

variable x 2 in integer<32>;

This declares a 2­dimensional input variable x of data type integer<32>.
Further declarations are parameter and constant declarations. In a wide range of

applications, it is desired to have parameterized iteration spaces. For example, con­
sider the afore given FIR filter, which has a certain number of taps N . This number
appears several times in the program. A good way to describe this is to declare N as
a parameter7. As most other languages, PAULA allows to define constants. These
named constants can be used everywhere in an expression.

Program Blocks. A program block contains a set of equations (see Section 2.2.2.1)
and/or recursively nested program blocks. Furthermore, each program block must
somehow define an iteration space, that is, a set of iterations in which all equations
and nested program blocks are defined.

There are two kinds of program blocks, which differ only in the way their itera­
tion space is defined: par statements and for loops. The par statement is the basic kind
of program block and has the following syntax:

[label:] par (iteration space)

{ /* ... equations and nested program blocks ... */}

The optional label is a name that might be used to identify and reference a program
block. Labels are useful if program transformations (for instance, loop unrolling)
should be applied only to a specific part of a program. If par statements are nested,
the iteration variables of the parent program block(s) become parameters for the
iteration space of the inner statement and can be used in the indexing functions of
indexed variables in the inner program block. Example:

6In this section, only indexed variables are discussed. For iteration variables, different rules apply,
which are described later.

7Parameters only apply to iteration spaces. If parameterized data types are needed, type aliases
can be used.

34



Languages for Parallel Programming

par (i >= 0 and i <= 10)

{ y[i] = ... // Here, only i is visible

pb1: par (j >= i and j <= 2*i)

{ x[i,j] = ... // Here, i and j are visible

}

}

For a detailed description of how iteration spaces are defined, it is referred to the
corresponding paragraph. Also note that in this example, the inner program block is
labeled ’pb1’, while the outer block has no name assigned.

If the iteration space of a program block is a simple, 1­dimensional range like
1 . . .10, for loops can be used as a more compact alternative to par statements. The
syntax is the following:

[label:] for (it_var = l_bound to u_bound [step stepsize])

{ /* ... equations and nested program blocks ... */}

If the step size is omitted, it is assumed as 1. This loop is similar to the “for”­loop
that can be found in many classic programming languages. Note, the “for”­loop is
only used to generate a set of iteration points. It implies no execution order of the
loop body, that is, if there are no restrictions by data dependencies, all iterations
might be executed in parallel. For example, the par statement

par (i >= 0 and i <= 10) { ... }

is equivalent to the following for loop:

for (i = 0 to 10) { ... }

Similarly, the par statement

par (i=2*x: x >= 3 and x <= 8) { ... }

which uses a lattice iteration space, could also be described in the following way:

for (i = 6 to 16 step 2) { ... }

Iteration Spaces. The type of an iteration space that is used in the PAULA lan­
guage is the type of parameterized linearly bounded lattices, an extension of LBLs, as
introduced in Definition 2.5, which is defined as follows:

Definition 2.8. (Parameterized Linearly Bounded Lattice). A parameterized linearly
bounded lattice denotes an iteration space of the form

I = {I ∈Zn | I =Mκ+ c ∧ Aκ+C p + b ≥ 0}(2.1)
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where κ ∈ Zl , M ∈ Zn×l , c ∈ Zn, A ∈ Zm×l , C ∈ Zm×q , b ∈ Zm , and p ∈ Zq

is a symbolic vector of parameters. {κ ∈ Zl | Aκ+ C p + b ≥ 0} denotes the set of
integral points within a convex polyhedron or in case of boundedness within a polytope
in Zl . This set is affinely mapped onto iteration vectors I using an affine transformation
(I =Mκ+ c). This transformation is referred to as lattice definition in the following.

The syntax to define iteration spaces in the PAULA language is very intuitive as the
following examples show.

[lattice_definition: ] polyhedron_definition

The following iteration space is considered as example.

I =
�
(i , j ) ∈ Z2 | i = 2x + 3 ∧ j = 4y + x − 1 ∧ 0≤ x ≤ 10 ∧ 2≤ y ≤ 8

	

In the PAULA language, this iteration space is written as follows:

i=2*x+3, j=4*y+x-1 : x >= 0 and x <= 10 and

y >= 2 and y <= 8

The lattice definition implicitly declares the iteration variables i and j, and the so­
called internal iteration variables x and y. The latter are only available in the polyhe­
dron definition that follows the lattice definition. They cannot be referenced inside
the program block to which the iteration space belongs, neither in the indexing
functions of indexed variables nor by nested program blocks’ iteration spaces. If L
is the identity matrix and m is the zero vector, Equation (2.1) can be simplified to
I = {I ∈ Zn | AI +C p + b ≥ 0}. In such situations, the PAULA language allows
an equally compact notation, in which the lattice definition is omitted. For example,
the iteration space I = {0≤ i ≤ 3 ∧ −2≤ j ≤ 9i} can be defined in the following
way:

i >= 0 and i <= 3 and j >= -2 and j <= 9*i

If this notation is used, there are obviously no internal iteration variables, and both
i and j are normal iteration variables. The next example describes a 2­dimensional
parameterized iteration space.

I = {i = x, j = 2 · y + 1∧−N ≤ x ≤ 2 ·N ∧ 0≤ y ≤ 5}

where N is a parameter. The PAULA syntax for this iteration space is straight for­
ward.

par (i=x, j=2*y+1: x>=-N and x<=2*N and y>=0 and y<=5)

{ ... }

The lattice definition declares the iteration variables i and j, and the so­called internal
iteration variables x and y. The latter are used only to generate the iteration space but
cannot be referenced anywhere else.
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Equations and Indexed Variables. Actual calculations (the data flow) of a pro­
gram are indicated by Equations. The basic syntax of an equation is:

[label:] indexed_variable = expression;

An example of an equation in a PAULA program could be:

x[i,j] = x[i-1,j] + y[2*i,j-1];

Similar to program blocks, equations may have a label, which gives them a unique
name and allows referencing.

eq3: x[i,j] = x[i-1,j+1] + y[2*i,j-1];

The data type of the expression on the right hand side of the equation must be equal
to, or automatically convertible to the data type of the indexed variable on the left
hand side. See Appendix B.2 for more details about data types and type conversions.

In a DPLA, variables that are used for data flow computations are called indexed
variables. As stated earlier, these variables must be declared at the beginning of a
program, and need a data type, and a certain dimension. The content of an indexed
variable is accessed by an indexing function. For instance, the indexing function of

variable y of the above example can also be written as
�

2 0

0 1

��

i
j

�

+

�

0

−1

�

.

The general form of an indexing function is given by QI + d with Q ∈ Zk×n and
d ∈ Zk , where k is the dimension of the indexed variable and I ∈ I is an iteration
point inside the iteration space I ⊂Zn.

For each equation, all iteration variables of the iteration spaces of all enclosing
program blocks are available as iteration variables in the indexing function.

par (i >= 0 and i <= 10 and j >= 0 and j <= 10)

{ // Here, i and j are valid iteration variables

c[i,j,0] = 0;

par (k >= 0 and k <= 10)

{ // Here, i, j, k are available as iteration variables

c[i,j,k] = a[i,j,k] * b[i,j,k] + c[i,j,k-1]

}

}

Equations with Iteration Dependent Conditions. In order to allow irregularities
in a program, an equation may have iteration dependent conditions. That is, a given
equation is valid only for a subset of iterations inside the current program block. The
syntax is

indexed_variable = expression if (iteration_space);
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Iteration dependent conditions can only use iteration variables that are defined by
iteration spaces of enclosing program blocks. An example, including iteration de­
pendent conditions, is given in Algorithm 2 for a matrix multiplication algorithm
(C =A×B).

Algorithm 2: Algorithm for matrix multiplication.
...
par (i >= 1 and i <= N and

j >= 1 and j <= N and

k >= 1 and k <= N)

{ // Equations with iteration dependent conditions

c[i,j,k] = 0 if (k == 1);

c[i,j,k] = a[i,j,k]*b[i,j,k] + c[i,j,k-1] if (k > 1);

C[i,j] = c[i,j,k] if (k == N);

// More equations (without iteration dependent cond.)

a[i,j,k] = A[i,k]; // Input matrix A

b[i,j,k] = B[k,j]; // Input matrix B

}
...

Again, note that the order of equations does not matter and thus the equations,
reading the input matrices, can appear after the computation and output equations
of the program.

Equations with Run­time Dependent Conditions. Besides iteration dependent
conditions, a PAULA equation can also have a run­time dependent condition. The
syntax is

indexed_variable = ifrt(cond_exp, then_exp, else_exp);

where cond_exp is the actual condition, an expression, which must be of data type
Boolean. Furthermore, the expressions then_exp and else_exp must each be of
the same type as the indexed variable on the left hand side of the equation or must
be convertible to that type. The value of the right hand side of the equation, that is,
the value “returned” by the ifrt statement, is the value of then_exp if cond_exp
evaluates to “true”, or the value of else_exp otherwise. In order to satisfy the single
assignment property, both branches must be defined. An example equation with a
run­time dependent condition to catch a division by zero is given as follows.

x[i,j] = ifrt(b[i,j] != 0, a[i,j]/b[i,j], 65535);

The next example might be part of an image processing algorithm. It ensures that
the value of a pixel does not exceed a certain limit. Of course, if the condition is
more complex, it can be separated into an equation of its own.
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c[i,j] = a[i,j] > 255;

v[i,j] = ifrt(c[i,j], a[i,j], 255);

Expressions. The syntax and semantics of expressions in the PAULA language are
not much different from those found in C and similar languages. Table 2.1 lists
all available operators and their precedence. During the design flow, operators are
replaced by functions. This is done because of binding possibilities (see Section
2.2.2.2) are only defined for functions, not operators. Table 2.2 lists the mapping
of operators to functions. Of course, the user may define (give binding possibilities
for) arbitrary additional functions. Note that the semantics of only the operators is
defined by the language. The design system may transform expressions that contain
operators by applying common mathematical rules. For instance, a*b+a*c can be
transformed to a*(b+c) and thus saving one multiplication. Such transformations
may not be performed on functions.

For the sake of brevity, we describe only the operators function and reduction in
detail because their semantics differ or do not exist in conventional languages such
as C.

Functions. In the PAULA language, functions are real mathematical functions,
which means their return values solely depend on the arguments. Functions cannot
have a state and there is also no global state. For every function, a binding possibility
has to be defined (see Section 2.2.2.2), which describes a hardware implementation
and/or a simulation model, and thus brings the semantics of the function. Examples
of functions are:

add(x[i], x[i-1]) or sin(y[i,j])

Big Operators. Big operators implement mathematical operators such as
∑

or
∏

. These operators are also often called reductions. The syntax is the following

operator [ iteration_space ] (expression)

where operator is one of SUM, PRODUCT, MIN, MAX. For instance,
10∑

j=0

b [i , j ] can

be written in PAULA as

SUM[j >= 0 and j <= 10](b[i,j])

However, in contrast to the common mathematical notation, the iteration space is
not required to be 1­dimensional. For example, we can write

SUM[j >= 0 and j <= 10 and k >= 0 and k <= j](c[i,j,k])
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Table 2.1: In the table, the operators in PAULA and their precedence is shown.

Precedence Operator Description Associativity

1 () grouping operator —
42 constant
a[] indexed variable access
f() function call

SUM[]() big operator
cast<>() type cast

2 + unary plus right to left
- unary minus
! logical negation
~ bitwise complement

3 * multiplication left to right
/ division
% modulus

4 + addition left to right
- subtraction

5 << bitwise shift operators left to right
>>

6 ==, !=, < relational operators only binary
>, <=, >= relations allowed

7 & bitwise and left to right

8 ^ bitwise xor left to right

9 | bitwise or left to right

10 && logical and left to right

11 || logical or left to right

to describe the following sum:
∑

( j k)T∈I

c [i , j , k]

with I =
¦

( j k)T ∈ Z2 : 0≤ j ≤ 10 ∧ 0≤ k ≤ j
©

. This is equivalent to the double
sum:

10∑

j=0

j∑

k=0

c [i , j , k]
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Table 2.2: The table depicts the mapping of operators to functions.

Operator Function

+ add
- sub
* mul
/ div
% mod

== eq
!= neq
> gt
< lt
>= geq
<= leq

& band
| bor
^ bxor
~ bnot

<< shl
>> shr

&& land
|| lor
! lnot

Similar to the nesting concept of program blocks, iteration variables from the pro­
gram block that contains the expression are available as parameters in the iteration
space of the big operator:

par (i >= 0 and i <= 15)

{ a[i] = SUM[j >= 0 and j <= i](b[i,j]);

}

The usage of big operators allows a compact and intuitive description style as the
image processing code fragment of an approximated 2­D Gaussian window filter
demonstrates in Algorithm 3.

2.2.2.2 Architectural Description

One of the major purposes of the PARO design system (for further readings, we
refer to Chapter 4) is to generate synthesizable hardware descriptions (for instance
in VHDL) for parallel algorithms or to generate code for tightly­coupled processor
arrays. The design flow involves, among others, the steps of allocation, binding,
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Algorithm 3: Approximated 2­D Gaussian window filter
...
w[0,0] = 1; w[0,1] = 2; w[0,2] = 1;

w[1,0] = 2; w[1,1] = 4; w[1,2] = 2;

w[2,0] = 1; w[2,1] = 2; w[2,2] = 1;

h[x,y] = SUM[i>=0 and i<=2 and

j>=0 and j<=2](pic_in[x+i,y+j] * w[i,j]);

pic_out[x,y] = h[x,y] » 4; // divided by 16
...

scheduling, and synthesis and code generation, respectively. Obviously, during hard­
ware or code generation, detailed knowledge about the target hardware architecture
is required. The definition of this architecture model and constraints such as num­
ber and types of available processing units can also be done in the PAULA language.
This section is necessary to describe resource constraints for scheduling and synthe­
sis as well as for code generation. An architecture model can be subdivided into
three parts: (1) resource type definitions, (2) resource allocation, (3) binding possibility
definitions. Since the architectural definitions are completely independent of the al­
gorithm, it is recommended to put them into separate source files and include them
in the main file, for example:

include("alu.arch.paro")

include("multiplier.arch.paro")

program example { ... }

Two files are included in this example, which contain architectural data for an ALU
and a dedicated multiplier.

Resource Type Definitions. A resource type definition describes which resource
types are available in an architecture model. The following code fragment shows
an example definition for a resource type that is called ’alu16’.

resourcetype alu16

{ ops 16;

input a integer<16>;

input b integer<16>;

output c integer<16>;

output d boolean;

component alu;

parameter WORDSIZE = 16;

}
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This resource type offers up to 16 different operations (’ops 16’). For resource types
that support only one operation, the ’ops’ statement may be omitted. Next, the data
I/O ports of the corresponding hardware component are defined. Our example ALU
has two inputs ’a’ and ’b’, and one output ’c’, all of type 16 bit integer, and an
additional Boolean output ’d’. Depending on which operation the ALU currently
performs, the result of the computation is available on either port ’c’ (for operations
that have a result of 16 bit integer, for instance, addition, subtraction, shift, and
so forth), or on output ’d’ (for operations that have a Boolean result, for instance,
comparisons). Afterwards, the resource type is mapped to a hardware component
’alu’, which may be a VHDL entity name. This mapping together with the following
’parameter’ statement allows to use an existing, generic HDL implementation (for
example, a generic VHDL entity) as basis for many different resource types. It should
be mentioned that there exist further statements, as for instance, one to annotate
different cost metrics to a resource type in order to allow early cost analysis and to
enable design space exploration.

Resource Allocation. The resource allocation determines how many instances of a
given resource type shall be available within one processor element8. The syntax is
the following:

allocation resourcetype_name integer;

For example, "allocation alu16 3;" would allocate up to three instances of
the resource type ’alu16’. It is also possible to allocate an infinite number of instances
per resource type, using the keyword ’infinite’ instead of a number.

allocation alu16 infinite;

Definition of Binding Possibilities. By defining binding possibilities, information
about which operations are supported by each resource type is added to the architec­
ture model. In PAULA, only functions can be mapped to hardware. Operators (like
’+’ or ’­’) are replaced by functions as a first step during synthesis. The syntax of a
binding possibility definition is the following:

bindingpossibility function

name (types_of_params) ret_type on resource { body }

Where types_of_params is a comma­separated list of data types, which implic­
itly defines the number of parameters of the function. For example:

function mul(integer<32>,integer<32>) integer<64>

8The number of processors is not specified in the architectural part, it is defined in the tiling and
mapping phases during synthesis.
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This declares a function called “mul”, which gets two 32­bit integers and returns
a 64­bit integer. Two sample binding possibilities for the resource type ’alu16’ (cf.
Section 2.2.2.2) may look as follows.

bindingpossibility function

mul(integer<16>, integer<16>) integer<16> on alu16

{ op 0;

input a,b;

output c;

cycles 2;

pipelinerate 1;

simulatorplugin "sim_alu16.so", "mul_int16";

}

bindingpossibility function

sub(integer<16>, integer<16>) integer<16> on alu16

{ op 1;

input a,b;

output c;

cycles 1;

pipelinerate 1;

simulatorplugin "sim_alu16.so", "sub_int16";

}

The body of a binding possibility consists of three parts, (1) the operation and (2)
port mapping, and (3) the scheduling parameters. The operation mapping (’op’ state­
ment) defines which operation number (opcode) must be selected by the generated
hardware control unit so that the resource performs the desired operation. Or, in
case of programmable architectures, this operation number corresponds to the ap­
propriate assembler instruction. The port mapping (’input’ and ’output’ state­
ments) assigns function parameters and the result to input/output ports of the hard­
ware component that implements the resource type, the function is bound to. The
port names that appear here, must be declared in the respective resource type defi­
nition, and their data types must match. The order of the input ports corresponds
to the order of the function parameters. The scheduling parameters (’cycles’ and
’pipelinerate’ statements) define the execution time and the pipeline rate of the
operation on the given resource type. The statement simulatorplugin defines
where the simulator can get a simulation model for the considered function. The
two arguments are the plugin file (for example, a dynamically loadable C library)
and the name of the (C­)function in the plugin.
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2.3 Summary and Conclusions

We have introduced the class of dynamic piecewise linear algorithms, which is a
consistent extension of recurrence equation­based algorithm classes in the polytope
by run­time dependent conditions. This extension significantly increases and eases
the modeling of a number of algorithms that also have few run­time dependent
conditions beside the data flow. Next, a reduced dependence graph model that in­
corporates the newly introduced conditional data flow has been developed. Here, in
addition to existing models, piecewise definitions and affine indexing functions of
left­hand side as well as of right­hand side variables of an equation are allowed. That
is, non­perfect nested loop programs with affine data dependencies and iteration and
run­time dependent conditions can be equivalently expressed by this graph model.
Third, a functional language, named PAULA, that reflects the properties of DPLAs
has been presented. Here, the intention was not to propagate yet another language
for parallel programming but to specify an input language that is exactly tailored for
our needs when mapping nested loop programs to dedicated hardware accelerators or
tightly­coupled arrays consisting of programmable and lightweight processors. The
language is based on the class of dynamic piecewise linear algorithms, therefore it
offers a full static single assignment form for multi­dimensional data flow. Moreover,
it contains elements such as big operators (reductions) and parts for the architectural
description of a target architecture.

It should be noted that the proposed features of PAULA may also be expressed in
a ’C­like’ or any other high­level programming language. But, in order to not mislead
a programmer, the catalog of restrictions and modifications would be as long as the
description of the PAULA language itself.

Another option would be, to start from a sequential program description, for
instance in C, and to parallelize the code afterwards. But, as already discussed in
Section 2.2.1, the necessary data dependency analysis might quickly become a very
complex task. In this context, we experimented with C­code parallelization [Bey02]
by using an exact method for data dependency analysis [Kie00], which is based on
parametric integer programming by Paul Feautrier [Fea88]. The method is even for
small examples very computational as well as memory intensive. Furthermore, a
large number of intermediate variables is introduced, which unnecessarily pad the
program out.

A further indication for not starting from C, is the notable number of new re­
cently emerging parallel programming languages for multi­core and graphics archi­
tectures. Thus, in the future, it would be reasonable to consider a combination of
PAULA with one of these novel domain­specific languages, or to directly extend such
a language, as for instance OpenCL [Khr08].
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3Chapter 3
Scheduling and Allocation

Scheduling and allocation are the key tasks in high­level synthesis and algorithm­
to­processor mapping. Because of the concepts and their application domains are
highly multifaceted, this chapter is focused on data flow dominated types of al­
gorithms, which are representable by DPLAs as already introduced in Chapter 2.
As target architectures, accelerators are considered that might be integrated as in­
tellectual property core [BMP07] in a system­on­a­chip. These accelerators can be
custom­tailored for just a single application or they can be domain­specific. This
means, that they can either occur in the form of dedicated hardware architectures or
as tightly­coupled arrays, consisting of lightweight processors with limited program­
ming, communication, and memory capacity.

First, related work in the areas of allocation, loop parallelization, and scheduling
are presented. Subsequently, basic definitions and concepts when mapping nested
loop programs onto the aforementioned accelerators, and synthesizing accelerators
from these programs, are presented. Moreover, different methods for the allocation
of a given loop program to several processors are introduced. After these fundamen­
tals, a modular concept for scheduling nested loop programs with run­time depen­
dent conditions is developed, where the conceived scheduling methods are based on
mixed integer programming (MIP) [PS82, NW99].

The major contributions of this chapter can be summarized as follows:

• An introduction to and differentiation from related approaches is given in Sec­
tion 3.1.

• A formulation of modular and exact scheduling concepts that simultaneously
consider scheduling on different levels (processor level and array level) is pre­
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sented. Here, in particular new concepts for the scheduling of partitioned
algorithms are developed (see Section 3.5).

• For the first time, an exact resource constrained scheduling method is derived
that regards software pipelining for programs with multi­dimensional data flow
in consideration of iteration dependent as well as run­time dependent condi­
tions (see Section 3.6).

• The modularity of the proposed concept is utilized in order to incorporate
further constraints (register, channel) that are necessary to target a special class
of tightly­coupled, programmable processor arrays (see Section 3.8).

3.1 Related Work

In the following, we summarize previous work in the areas of allocation and schedul­
ing that are related to this thesis. Afterwards, a differentiation from similar ap­
proaches is given.

3.1.1 Allocation

In general, allocation [GDWL92, Tei97] denotes the type and quantity of compo­
nents that are used in an implementation, for example, different types and number of
processors, memories, communication resources, or functional units such as adders
or multipliers. Often, pre­estimated metrics (latency, area and power cost, etc.) are
annotated to the components, which allow an early examination of cost and perfor­
mance characteristics of the system. The granularity of the allocated components
can vary depending on the different abstraction levels during the design of a system
(cf. Figure 1.2 in Chapter 1).

In this work, parallelism is exploited at several levels and the considered processor
architectures are hierarchically composed. Thus, in the following, we differentiate
between a local allocation and a global allocation.

Local allocation denotes the resource allocation of a single processing element or
processor. This definition corresponds to the concept of allocation in high­level syn­
thesis (see above). For instance, the number and types of functional units, number
of registers, or number of I/O ports that are available for one processing element and
processor, respectively. Local allocation should be complete in the sense that for each
functionality to be implemented, at least one corresponding component should exist.
This relation is called binding possibility and the actual assignment of one operation
to a component is called binding [Tei97] or module selection [JPP88, GDWL92].
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Commonly, the relation between operations with binding possibilities and the al­
location is expressed by graph models, namely problem or data flow graphs and a
resource graph.

Global allocation represents a macroscopic view and reflects a number of proces­
sors. Often, this allocation is accompanied by the static assignment1 of work to the
processors. More precisely, the assignment, called space mapping, denotes which iter­
ations of a nested loop program are executed on which processor. Most of the time,
linear transformations [Mol83, Len93] are used as space mappings because they are
leading to regular and simple designs, and therefore ease implementability. One of
the first and simplest allocation methods is to consider a projection of the iteration
space along a vector [Kuh80]. All iteration points that are crossed by the same vector,
are assigned to the same processor. Though it is possible to define the projection in
such a way, that a certain number of processors is not exceeded, data distribution and
possible dependencies between the iterations might be unfavorably arranged. Hence,
in most works, for instance in [Mol83,MW84,Qui84,LW85,Rao85,HL87,Omt88,
Len89, QRW00], the projection vector is rather selected in order to maximize the
throughput with respect to the data dependencies of the algorithm. Unfortunately,
by following this strategy, the number of processors depends on the problem size
(size of the iteration space). In addition, projections reduce the dimension of the
iteration space by one. Hence, in practice, they are only suitable to a certain dimen­
sion. This problem led to the idea to project the iteration space several times. Works
that studied these so­called multi­projections include [LK90, KH03, DSV05].

Beside projection, partitioning2 [IT88] is the other well known transformation,
which covers the iteration space of computation using congruent tiles as for exam­
ple, hyperplanes [MF86, WPS96], hyperquaders, or parallelotopes. Other common
terms for partitioning in literature [WS91, Wol96a, Xue00, CDK+02] are loop tiling,
blocking, or strip mining. The transformation has been studied in detail for com­
pilers and its use has led to program acceleration through better cache reuse on se­
quential processors [CM95, XH98, KK05, KNB+08]. Here, the idea is to divide
the iteration space into chunks such that the corresponding data fits into the cache.
Furthermore, partitioning is used for the implementation of algorithms on given
parallel architectures ranging from supercomputers to multi­DSP solutions, proces­
sor arrays, and FPGA architectures [DRS00]. It is carried out in order to match a
loop nest implementation to resource constraints in terms of available number of
processors, local memory, and communication bandwidth. In the following, we fo­
cus only on techniques that are used for algorithm mapping onto processor array

1In this work, only the static workload distribution is studied. That is, no operating system that
distributes the work to several processors or a run­time library for thread dispatching (like in modern
graphics processors [LNOM08] or in the Cell processor [IBM07]) is considered.

2In mathematics, similar problems are even studied since a longer time [Haj42].
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architectures. Here, well known partitioning techniques are LSGP (locally sequen­
tial, globally parallel) [Jai86], which is also often referred to as clustering or block­
ing [Wol96a] and LPGS (locally parallel, globally sequential) [Jai86, MF86], which
is also referred to as tiling. In their original definition, these partitioning tech­
niques are not applied to the iteration space but to the full size array. These arrays
are decomposed into groups of processors. For instance, in the LSGP approach,
the array is divided into clusters of n processors. Then, each cluster is mapped
onto a single processor that executes the workload of these n processors sequen­
tially. In the LPGS method, the array is decomposed into subarrays, which are
then executed by a target array in a serial manner (an illustration follows in Sec­
tion 3.3.2). These approaches preserve the regularity and locality of the original
algorithm. Moreover, control overhead remains small and manageable. LPGS par­
titioning [TT92, TT93, Zim97, KLY00, ZA01, KMAC06, BRS07] and LSGP parti­
tioning [BDD90,DD90,TT92,TT93,Dar91,MC95,TTZ97,Zim97,Fim00,ZA01]
have been widely studied. Both the LSGP and the LPGS partitioning scheme can
be used in order to derive architectures with a fixed number of processors. In the
LSGP approach, local memories within the processing elements are necessary, which
depend on the size of the iteration space. Due to local processing, communication
within the array and to the peripherals is moderate. On the contrary, in the LPGS
approach, less memory within the processor is necessary. Thus, data reuse is only
possible to a limited extent and thus, the communication to external memory in­
creases.

The pros and cons of the LPGS and LSGP approaches led to the idea of co­
partitioning [EM97a, Eck01]. Co­partitioning uses both LSGP and LPGS methods
in a combined way in order to balance local memory requirements with the I/O
bandwidth and, simultaneously, has the advantage of problem size independence.
Since the approach partitions an already partitioned iteration space, it can be seen as
a hierarchical partitioning method [ML90,EM99,DHT06c,RHDR07]. Hierarchical
partitioning schemes are well suited in order to adapt the algorithm to a memory
hierarchy [CDK+02].

Other works [AKN95, RR02, PL06] systematically study the derivation of opti­
mal tile shapes in form of n­dimensional parallelotopes. Here, the estimation of the
so­called footprint [ST86] is often used during optimization. A footprint denotes the
number of data accesses within a tile. Ideally, the entire footprint fits into a local
memory, thus I/O accesses are reduced.

Most approaches are focused on finding optimal tile shapes but do not present
a solution to the problem of partitioning possible data dependencies across the it­
erations. The work of Teich and Thiele [TT93, TT02] as well as our work in
[DHT06c], give insight into this problem.

50



Related Work

All of the aforementioned partitioning schemes consider congruent tiles with an
equal number of iteration points. For the sake of completeness, we would like to
mention that there exist some works, which also consider irregular partitionings3 of
a loop nest [KNBP05, KNS+06].

3.1.2 Scheduling

Scheduling exists since humans plan different activities over time. It can be easily
imagined that scheduling problems are omnipresent in our daily life. Most promi­
nent examples include the scheduling of computational, manufacturing, or logistic
processes. In practice, these processes4 compete for resources, which can be of very
different nature, for instance processors, machines, energy, tools, money, or man­
power. Often, the individual tasks depend on each other or have to fulfill deadlines.
Usually, scheduling is not only concerned with finding a valid order and assign­
ment of processes to resource but also include optimization. Examples for opti­
mization goals are cost (area, power, monetary), performance (latency, throughput,
turnaround, waiting time), or fairness.

In order to classify the later presented related work, some distinctive features are
discussed in the following.

Offline and Online Scheduling. A schedule is called offline if it is determined in
advance at compile­time. In contrast, methods that determine a schedule at run­time
are called online. Online scheduling occurs for instance in operating systems where
tasks can be created dynamically and have to be assigned to available resources. For
control intensive applications, these methods often have to incorporate real­time
constraints. In offline methods, often the execution times of the processes are known
in advance in order to determine the start times of the different processes and not
only the execution order. Whereas, in online scheduling methods, the execution time
of a process is commonly known only at run­time. Hence, methods and models for
offline and online scheduling are greatly different [But02].

Preemptive and Non­Preemptive Scheduling. In non­preemptive scheduling tech­
niques, the resources that are assigned to a running process are occupied until the
process has completely finished its execution. On the contrary, in preemptive schedul­
ing methods, the execution of a process can be suspended in order to allow the execu­
tion of other processes. Preemptive methods are most common in software systems

3Here, methods are meant that can be written again as a higher dimensional loop nest, not general
graph partitioning, multilevel approaches [WC00], or other methods used for load balancing.

4When generally speaking about scheduling the term process might be synonymous with terms
such as activity, task, operation, or job.
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where relatively long tasks are executed in order to give an impression of quasi­parallel
processing [SGG04].

Data Dependencies and Resource Constraints. A further attribute of a schedul­
ing problem is whether data dependencies between different processes can be con­
sidered. Also it can be distinguished between scheduling problems with or without
resource constraints. With regard to complexity, problems not considering data de­
pendencies and resource constraints are trivial. This is also the case if all tasks are in­
dependent of each other and have the same execution time. This case is exploited for
instance in modern graphics hardware, where the same pixel operations are executed
millions of times, distributed over dozens of processing units. In case of data de­
pendencies and no resource constraints, scheduling can be performed in polynomial
time (which will be discussed later). Whereas, if resource constraints are considered,
scheduling can become a hard combinatorial problem. Often, these problems can be
formulated as packing problems and thus are NP­hard [CLR97] in general.

Iterative Scheduling. Eventually, a distinction can be made between a set of pro­
cesses that has to be executed only once or if this set has to be executed repeatedly.
Methods that consider the latter behavior are called periodic or iterative scheduling.
As the name suggests, they are closely related to iterative algorithms in form of loop
specifications. Among the execution of loop programs [Wol96a, Dar99, DRV00],
iterative scheduling is an important topic in real­time systems [But02] and digital
signal processing [Swa87, SB00].

The overview of related work in the next section is focused on scheduling problems
for computers and in particular scheduling operations under resource constraints.
Mainly static and non­preemptive methods are discussed.

First, some methods for scheduling acyclic data flow graphs without and with
resource constraints are presented. Afterwards, methods that incorporate control
flow constraints are discussed. Subsequently, an overview of scheduling methods for
processors that consider register constraints is given and finally, scheduling methods
for one­dimensional and multi­dimensional data flow are discussed.

3.1.2.1 Scheduling of Data Flow Graphs

In high­level synthesis, data flow is often expressed by directed acyclic graphs, where
operations are denoted by nodes and data dependencies between the operations are
expressed by directed edges.
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Absence of Resource Constraints. Even though in practice resource constraints
always exist, scheduling methods without resource constraints are of interest, for
instance, in order to determine lower bounds of the execution time. A valid execu­
tion order can be found by topologically sorting a given data flow graph G = (V , E),
which can be done in O(|V |+ |E |) time [CLR97]. This graph sorting algorithm is
also adapted in the ASAP (as soon as possible) method [TS86] for finding a schedule
with minimal latency5. Sometimes this method is also referred to as forward schedul­
ing [Bal88]. Similarly, backward scheduling plans the execution of operations for a
given latency bound as late as possible (ALAP). The difference of a node’s start time
obtained by the ALAP and ASAP methods is called mobility.

Scheduling with Resource Constraints. A method that is alternating between the
ALAP and ASAP method is called double headed scheduling [Bal88]. In this method,
a higher priority is given to operations with small mobility. If the number of available
resources are exceeded, the operations are moved to a later start time.

Other most popular scheduling heuristics are the critical path method proposed in
the 1950s, urgency scheduling, which plans operations first with higher urgency, list
scheduling [Gra66, DLSM81], force­directed scheduling [PK89, CT90], or methods
[DN89] that are based on simulated annealing [KGV83]. List scheduling is the
prevalent method, where each operation is prioritized in advance and many different
prioritization criteria have been proposed [ACD74]. For instance, the mobility of
nodes, the execution time of a node, or the critical path length can be considered.

Aside from heuristics, there exist exact methods based on integer linear program­
ming to obtain optimal schedules. The main idea, to use integer linear program­
ming with binary variables for the synthesis at register transfer level, dates back to
the work of Hafer and Parker [HP81]. Many works are based on their approach,
for instance [KKT90, GE93]. Particularly worthy of mention is the work by Hwang
and others [HHL90], who presented an integer linear programming model for the
scheduling problem in high­level synthesis, taking different types of resource con­
straints (multi­cycle operations, functional pipelining, etc.) into account. Other
exact approaches are based on solving dis­equations6 [CDF06] and graph color­
ing [CF07].

3.1.2.2 Scheduling of Conditional Branches

Heuristics. Several heuristics have been proposed in literature [TWR+88, Cam91,
CGR93, KYLL94, EKP+98, Gra00, KWL01] that consider the scheduling of condi­

5The latency of an algorithm or graph denotes its execution time.
6In contrast to inequalities, denoted by a > b , a dis­equation is denoted by a 6= b . This terminol­

ogy has been proposed by the authors is [GM86].
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tional branches within data flow graphs. Other approaches consider the scheduling
of synchronous data flow (SDF) graphs using token models [BL93]. The application
of token models for the execution of different branches is especially beneficial when
the different execution paths are relatively long [AS06, GK08].

Exact Methods. However, due to the complexity of enumerating different paths,
there exist only few exact methods [HHL90, KW01]. Hwang and others integrate
conditional resource sharing in their proposed integer linear program by the def­
inition of a so called relation tree [HHL90]. By the relation tree, it is denoted
whether operations might be executed in parallel or if they are mutually exclusive.
Kuchcinski and Wolinski propose a scheduling method [KW01], which is based on
so­called hierarchical conditional dependency graphs [KW98] and constraint logic pro­
gramming [Kuc98, Dec03].

3.1.2.3 Scheduling of Loop Programs and Loop Parallelization

Scheduling of loop programs is of great importance since many scientific and digi­
tal signal processing programs spend a large fraction of the overall computing time
in loops [Knu71, SMN+03]. Existing works for scheduling loop programs can be
mainly grouped into two areas. In the first area, the iteration space of a loop pro­
gram and data dependencies across the iterations are considered but not the oper­
ations in the loop body itself. Often, no resource constraints are accounted for in
these methods. First goal is to obtain a maximum degree of parallelism and to find a
valid iteration order with minimal latency. Thus these methods are referred to as loop
parallelization. Such techniques are of great interest in high­performance computing
and parallel processor arrays. The other area covers the instruction level parallelism of
the loop body in an iterative fashion. Here, the challenge is to minimize the intervals
between subsequent iterations or even better to overlap the execution of operations
that belong to different iterations.

Loop Parallelization. Most of the time, the analysis is restricted to well defined
algorithm classes as loop nests with static bounds and uniform data dependencies
(cf. Section 2.1.1). But even these simple classes are very important in practice and
thus a lot of research has been performed in this area. The regularity of the considered
algorithms is the key to efficient parallelization since it becomes independent of the
size of the iteration space.

Lamport [Lam74] studied the parallel execution of loops by introducing the so
called hyperplane method. In his seminal work, the entire loop body is considered
as one block. The start times of different iterations are defined by a linear function
that minimizes the overall execution time. Iterations that lie on the same hyperplane
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can be executed in parallel. Based on Lamport’s work, many other works have been
proposed, for instance [SF91, HS93, DV95]. In [Rao85], Rao presented a schedul­
ing method based on linear programming for the design of regular processor arrays.
Darte and Robert [DR92] reduced the scheduling of uniform loop nests to the so­
lution of a single linear program. Darte et alii [DKR92] also proved that linear
scheduling is asymptotically as good as free scheduling for a uniform loop nest when
considering the entire loop body as one block. Consequently, in [Fea92a, DR94a]
affine scheduling methods have been developed that consider a same linear part plus
an offset for each statement of the loop body. Methods that assign an affine func­
tion to each statement of a loop body are presented in [DR95] and called affine­by­
statement scheduling.

Since scheduling of loop programs might lead to large linear programs, structured
scheduling was proposed in [QR02, Fea06] where a large program is divided into
smaller parts, which can be scheduled separately.

Another way to structure computations is to partition the iteration space into
several spaces (cf. Section 3.1.1). The assignment of different affine scheduling func­
tions to these spaces can be interpreted as multi­dimensional time within the original
iteration space [Fea92b, BL01, BRS07]. In [ML90], the authors propose a multi­
mesh method for matrix computations. The authors in [TTZ96] and [ZA97] pro­
pose sequentialization constraints in order to determine schedules for partitioned
algorithms. Eckhart and Merker are concerned with so­called co­partitioned algo­
rithms [EM97a] and their scheduling [EM97b]. In [AZ00, ZA01], Zimmermann
and Achtziger propose an optimal scheduling method based on quadratic program­
ming for LSGP and LPGS partitioned processor arrays.

Other approaches emphasize on the scheduling of the communications and data
reuse in processor arrays [CK93, DRR95, SM04, SM06b, SM06c].

Instruction Scheduling with Software Pipelining. Since the body of a loop pro­
gram might be traversed an enormous7 number of times, particular attention has
been spent for optimizing the execution time of the loop by exploiting instruction­
level parallelism (ILP) [RF93]. The exploitation of instruction­level parallelism is of
vital importance in high­level synthesis since, thanks to the parallel nature of hard­
ware, a large number of modules could work in parallel, maybe processing several
iterations at the same time. This technique is called software pipelining [AJLA95].

The counterpart are programmable systems such as VLIW processor architec­
tures [Fis83,CNO+88,RYYT89] and explicitly parallel instruction computing (EPIC)
[SR00] that offer several functional units, which execute a fixed schedule determined

7For instance, the processing of a 10 megapixel image by a 5× 5 window filter results in 250
million loop iterations.
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at compile­time of the program. Examples of contemporary VLIW and EPIC CPUs
include the general purpose architecture of Intel’s Itanium IA­64 [Int04, GCC+05]
and a number of embedded processors for digital signal and media processing such
as the the TriMedia family from NXP Semiconductors [ESV+99], the TigerSHARC
processors by Analog Devices [FG00], the TMS320C6000 family of DSPs by Texas
Instruments [Tex08], the ST200 family from STMicroelectronics [FBF+00], and the
HiveFlex family by Silicon Hive [PBSF06].

Most compilers for the aforementioned VLIW architectures use heuristics for
loop scheduling [Lam88,RF93,SCD+97]. Well known methods are trace scheduling
[Fis81,SDJ84], which is used in a slightly modified version for the ST200 processors,
and iterative modulo scheduling [Rau94]. Based on these methods, there exists a
multitude of variations, for instance [LGAV96, SL99]. For a comparative study, we
refer to [CLG02].

In [SL96, SM98, PJ03], software pipelining for loops that contain conditional
branches is considered.

Modern processors (for instance the Itanium processor [Int04] or the Cell Broad­
band Engine Architecture [KDH+05]) include instructions for so­called predicated
execution [MHB+94]. The idea is to replace if­statements by straight line scalar op­
erations prior to scheduling. Thus, both branches might be executed in parallel and
finally only the result in dependence of the condition has to be selected. Example:

if (b>0) then c = compare(b>0);

a = x+b; a1 = x+b;

else a2 = y+7;

a = y+7; a = select(c, a1, a2);

endif

The removal of branches is called if­conversion [AKPW83, PS91]. This technique is
used in many scheduling approaches [WHSB92, MLC+92, AHM97, SG04, Fer07]
in order to handle conditional branches.

Often, for high performance computing or embedded computing with stringent
constraints, the best solutions are needed. Hence, a number of exact approaches
most of them based on linear programming formulations have been proposed [Fea94,
EDA95, GAG96, DSRV02, TE02, YKM03, MFM04, FKPM05].

All the aforementioned works consider only the innermost loop of a given loop
nest. This leads to an exploration problem of the loop order. Few other methods such
as [RTG+07, QSL+08] consider the entire loop nest. These methods are referred to
as multi­dimensional loop or multi­dimensional data flow [PS96].

Thus, it seems obvious that some of these VLIW methods have been adapted
for the design of dedicated hardware. The basic idea is to instantiate a number
of functional units and registers that are necessary for the execution of one dedi­
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cated loop program and to use VLIW compilation techniques in order to synthesize
the control path of the circuit. The most prominent example of such a method is
PICO [SAR+00a, KAS+02], developed at the HP labs and commercialized by Syn­
fora [Syn09]. Other recent VLIW­based approaches for the design of custom hard­
ware are presented in [Moh06] and [KLB08]. A disadvantage of VLIW methods is
that with an increasing number of functional units the cost for multiplexers and reg­
isters grows dramatically. Other high­level synthesis approaches [CD04,KSP07] that
rely on the scheduling of data flow graphs perform loop unrolling in order to increase
the number of operations within the loop body or rather the number of nodes in the
data flow graph. Subsequently, thanks to the increased number of nodes, a higher
throughput and better resource utilization might be achieved.

Combined Methods. In [Thi95], Thiele combined for the first time the work
of [HHL90] (scheduling with resource constraints in high­level synthesis) with the
works of Darte and Robert on scheduling of uniform loop nests [DR92]. For loops
with uniform dependencies, he formulated a single integer linear program, which
simultaneously optimizes the schedule between different processing elements and the
local execution order within the processing elements. The authors in [FM97,HT01,
DRK01] presented similar approaches. However, the number of processing elements
in all these approaches is dependent on the problem size of the algorithm. Methods
for a fixed number of processing elements derived by so­called LSGP partitioning
(see Section 3.1.1) have been proposed by Teich and others [TTZ96, TTZ97] and
Fimmel [Fim00].

3.1.3 Differentiation

Most closely related to the scheduling methods presented in this thesis are the works
of Eckhart, Fimmel, Müller, and Siegel. Thus, we differentiate in more detail from
these works in the following.

Eckhart [EM97a, EM97b, Eck01] developed and extensively studied co­parti­
tioning with respect to I/O, communication, and memory demands. He proposed
a scheduling method [EM97b] for the execution order of iteration points, but did
not consider the local allocation and operation scheduling. Further, the proposed
scheduling technique is limited to rectangular tiles.

In [FM97, Fim02], Fimmel presented integer linear formulations for obtaining
suitable allocations (projections of the iteration space) as well as for scheduling these
projected algorithms. But even in his work [Fim00] on LSGP partitioning, the
processor allocation is derived by projection. Hence, the derived linear schedule
corresponds to the hyperplane method [Lam74]. In order to not exceeded a given
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number n of processors, the hyperplane is chosen in such a manner that the number
of iteration points on the plane is less or equal to n.

Müller [MFM04, Mül04, Mül06] developed optimal scheduling methods for
software pipelining taking several parallel functional units and register constraints
into account. The work considers single processor scheduling and one­dimensional
loops.

Siegel [SM04, SM06b, SM06c, SM06d] studied integer linear program formu­
lations that minimize data reuse and communication within processor arrays. His
works are orthogonal to ours. In [SMHT06], we studied the combination of both
approaches.

As another distinction from previously published results, all aforementioned works
do not consider conditional program execution. Finally, in case of partitioning, only
rectangular and higher dimensional orthogonal shaped tiles have been considered so
far.

3.2 Preliminaries

In the following, perfectly nested loop programs with a linearly bounded lattice as
iteration space I and uniform data dependencies are considered as defined in Sec­
tion 2.1.1. For methods, how to transform non­perfectly loop nests into perfectly
ones and how to handle affine data dependencies, we refer to Chapter 4.

Affine transformations are used in order to assign each iteration point I ∈ I ⊂Zn

a processor index p ∈ P (global allocation) and a time index t ∈ T (scheduling).
Both affine transformations together define the so­called space­time mapping8 as
given in Equation (3.1).
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where Φ ∈ Zs×n, Λ ∈ Z1×n, φ ∈ Zs , s < n ∈ N, and λ ∈ Z. The set T = {t | t =
ΛI + λ ∧ I ∈ I} ⊂ Z is called time space, that is the set of all time steps where an
execution takes place. The set P = {p | p =ΦI +φ ∧ I ∈ I} ⊂Zs is called processor
space. Its cardinality |P | denotes the number of processors. Φ is called allocation
matrix and determines the processor (maybe offset by φ) that executes an iteration
point I . Λ is called schedule vector and provides the start time (optionally shifted by

8Moldovan [Mol83] uses already a similar linear transformation but he requires the transforma­
tion to be bijective, that is, the transformation matrix Θ must have full rank. The same definition is
used by Lengauer [Len93] and referred to as space­time mapping.
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the offset λ) of each iteration point I . Together, Φ and Λ build the transformation
matrix Θ.

Due to technological and physical constraints, the dimension s is usually limited
to two or in case of 3D stacking [LDG+02,BAB+06] to three. Otherwise, the higher
dimensional processor array has to be embedded in a lower dimensional one.

The space mappings, considered within the thesis as processor allocation (global
allocation) as well as the allocation of functional units are described more precisely
in the following section. Afterwards, in Sections 3.4 to 3.8, different resource con­
strained scheduling methods are developed in order to derive suitable scheduling
vectors Λ.

3.3 Allocation and Space Mapping

Let an extended reduced dependence graph (cf. Definition 2.7) for a DPRA (uniform
data dependencies are represented by a set D) be given, thus we can write G =
(V , E , D). In order to have a relation between the individual operations denoted
by the nodes vi ∈ V and the actual available resources (adders, multipliers, etc.), a
so­called resource graph [Thi95] is introduced.

Definition 3.1 (Resource graph). A resource graph GR = (VR, ER,W ,∆) is a bipartite
graph. The set of nodes VR = V ∪VT includes, as the first partition of nodes, the set of
nodes V of the reduced dependence graph G = (V , E , D). The second partition is defined
by the resource types (for instance adders or multipliers) rk ∈VT . An edge (vi , rk) ∈ ER

with vi ∈V and rk ∈VT denotes a binding possibility, that is, vi might be implemented
on an instance of resource type rk . There exist a function w : ER→ N0, which assigns a
time w(vi , rk) ∈W to each edge (vi , rk) ∈ ER. w(vi , rk) denotes the execution time of
node vi processed on rk . Furthermore, there exist a function δ : VT → N, which assigns
to each resource type a pipeline rate δ(rk) ∈ ∆. In case of multi­cycle operations, the
pipeline rate denotes the number of clock cycles that a resource is occupied before the next
operation can start.

Similar to the execution times and pipeline rates, Definition 3.1 can be easily ex­
tended by further attributes such as area or power cost, which should not be formal­
ized in greater detail at this point.

In order to express the quantity of available resource types, the local allocation
(cf. Section 3.1.1) is defined as follows.

Definition 3.2 (Local allocation). Let a specification defined by a reduced dependence
graph G = (V , E , D) and a resource graph GR = (VR, ER,W ,∆) be given. Then, the
allocation is a function α : VT →N0 that assigns to each resource type rk ∈VT a number
α(rk) of available instances.
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Figure 3.1: Resource graph and allocation.

In Figure 3.1, the concepts of a resource graph and allocation are shown. Here, two
instances of an ALU and one dedicated multiplier are available. The ALUs have a
pipeline rate of one, the multiplier of two. For instance, the node v6, representing a
multiplication operation, has two binding possibilities. As the first one, the operation
can be bound to the ALU with an execution time of nine clock cycles. The second
binding possibility is on the dedicated multiplier with four cycles latency.

Next, different variants of space mappings are presented that define the global
allocation (cf. Section 3.1.1). For illustration purposes, the following simple example
is used.

Example 3.1 (FIR filter). An FIR (finite impulse response) filter is described by the
difference equation

Y (i) =
N−1∑

j=0

A( j ) ·U (i − j ) ∀i : 0≤ i <M(3.2)

Where N denotes the number of filter taps, A( j ) the filter coefficients, U (i) the filter
inputs, and Y (i) the filter result. After parallelization and embedding in a common it­
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Figure 3.2: Dependence graph of the FIR filter in Equation (3.2) for N = 6 and
M = 8. Note that each instance of the input and output variables (A, U , and Y )
belongs to its nearest integral point. They are only shifted for visibility reasons.

eration space, the difference equation can be expressed by the following equivalent uniform
algorithm.

a[i , j ] =A[ j ] if i = 0

a[i , j ] = a[i − 1, j ] if i > 0

u[i , j ] =U [i] if j = 0

u[i , j ] = 0 if i = 0 ∧ j > 0

u[i , j ] = u[i − 1, j − 1] if i > 0 ∧ j > 0

z[i , j ] = a[i , j ] · u[i , j ]

y[i , j ] = z[i , j ] if j = 0

y[i , j ] = y[i , j − 1]+ z[i , j ] if j > 0

Y [i] = y[i , j ] if j =N − 1

The iteration space is defined by I =
�
(i j )T ∈ Z2 | 0≤ i ≤M − 1 ∧ 0≤ j ≤N − 1

	
.

The dependence graph of the FIR filter for N = 6 and M = 8 is shown in Figure 3.2.
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Figure 3.3: A projection in direction u = (1 0)T of the iteration space leads to an
implementation with six processing elements.

3.3.1 Projection

In order not to synthesize one dedicated processing element for each iteration point,
a projection of the iteration space along a vector u is considered. Projection of
the iteration space of the FIR filter example in direction u = (1 0)T results in six
processing elements (see Figure 3.3). Each of the six elements PE j has to process
the eight iteration points that are projected on each other. Since an iteration space
I ⊂Zn is reduced by a projection vector u ∈ Zn by one, the corresponding allocation
matrix Φ is an (n − 1)× n matrix. The matrix is an equivalent description of the
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allocation, if it satisfies Φu = 0 [Kuh80]. If the projection vector is given by u =
(u1 u2 . . . un)

T ∈ Zn, the allocation matrix Φ can be constructed as follows:

Φ=

















ui 0 . . . 0 −u1 0 . . . 0

0 ui . . . 0 −u2

...
...

...
... .. . ...

...
0 0 . . . ui −ui−1 0 . . . 0
0 . . . 0 −ui+1 ui . . . 0
...

...
...

... . . . ...
0 . . . 0 −un 0 . . . ui

















where ui 6= 0, 1≤ i ≤ n.

3.3.2 Partitioning

Formally, partitioning divides the iteration space I ⊂ Zn into congruent tiles (see
Section 3.1.1), such that it is decomposed into spaces I1 and I2 to fulfill I ⊆ I1⊕I2.
In case of parallelotope­shaped tiles, the decomposition is defined as follows.

I1⊕ I2 =
�

I = I1+T I2 | I1 ∈ I1 ∧ I2 ∈ I2 ∧ T ∈ Zn×n
	

(3.3)

Here, I1 ∈ Z
n represents the points within the tile and I2 ∈ Z

n accounts for the
regular repetition of the tiles, meaning, the origin of each tile. The tile shape and
its size is defined by a tiling matrix T . When partitioning a given algorithm by a
tiling matrix T , mainly two things have to be carried out. The iteration space of the
algorithm has to be decomposed according to Equation (3.3). Furthermore, since the
dimension of the iteration space is increased (two times n), all variables have to be
embedded in the higher dimensional iteration space such that all data dependencies
are preserved, additional equations may have to be added that define the inter­tile
dependencies. For further details we refer to [TT92, TT93, Tei93] and our work
in [DHT06c].

For exemplification, the FIR filter example is partitioned by the following tiling
matrix T , which defines a rectangular tile.

T =

�

M1 0
0 N1

�

with M1 <M ∧ N1 <N
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a[i1, j1, i2, j2] =A[i1, j1, i2, j2] if i1 = 0 ∧ i2 = 0

a[i1, j1, i2, j2] = a[i1− 1, j1, i2, j2] if i1 > 0

a[i1, j1, i2, j2] = a[i1+M1− 1, j1, i2− 1, j2] if i1 = 0 ∧ i2 > 0

u[i1, j1, i2, j2] =U [i1, j1, i2, j2] if j1 = 0 ∧ j2 = 0

u[i1, j1, i2, j2] = 0 if i1 = 0 ∧ i2 = 0

∧ j1+ j2 > 0

u[i1, j1, i2, j2] = u[i1− 1, j1− 1, i2, j2] if i1 > 0 ∧ j1 > 0

u[i1, j1, i2, j2] = u[i1+M1− 1, j1− 1, i2− 1, j2] if i1 = 0 ∧ j1 > 0

∧ i2 > 0

u[i1, j1, i2, j2] = u[i1− 1, j1+N1− 1, i2, j2− 1] if i1 > 0 ∧ j1 = 0

∧ j2 > 0

u[i1, j1, i2, j2] = u[i1+M1− 1, j1+N1− 1, i2− 1, j2− 1] if i1 = 0 ∧ j1 = 0

∧ i2 > 0 ∧ j2 > 0

z[i1, j1, i2, j2] = a[i1, j1, i2, j2] · u[i1, j1, i2, j2]

y[i1, j1, i2, j2] = z[i1, j1, i2, j2] if j1 = 0 ∧ j2 = 0

y[i1, j1, i2, j2] = y[i1, j1− 1, i2, j2]+ z[i1, j1, i2, j2] if j1 > 0

y[i1, j1, i2, j2] = y[i1, j1+N1− 1, i2, j2− 1]+ z[i1, j1, i2, j2] if j1 = 0 ∧ j2 > 0

Y [i1, j1, i2, j2] = y[i1, j1, i2, j2] if j1 =N1− 1 ∧ j2 =N2− 1

Where the two iteration spaces are defined by

I1 =
¦

(i1 j1)
T ∈ Z2 | 0≤ i1 ≤M1− 1 ∧ 0≤ j1 ≤N1− 1

©

I2 =
¦

(i2 j2)
T ∈ Z2 | 0≤ i2 ≤M2− 1 ∧ 0≤ j2 ≤N2− 1

©

Where M2 =
l

M
M1

m

and N2 =
l

N
N1

m

. Note, if the fractions are integral (that is,

if it is not necessary to round up), a partitioning is called perfect. Partitioned by

T =

�

2 0
0 3

�

, the FIR filter example is shown in Figure 3.4. According to the

tiling matrix, the iteration spaces are defined by

I1 =
¦

(i1 j1)
T ∈ Z2 | 0≤ i1 ≤ 1 ∧ 0≤ j1 ≤ 2

©

I2 =
¦

(i2 j2)
T ∈ Z2 | 0≤ i2 ≤ 3 ∧ 0≤ j2 ≤ 1

©

Until now, the performed partitioning is only a decomposition of the iteration space
and clustering of iterations. Only by interpretation, the partitioning becomes a
LSGP or LPGS partitioning and therefore the processor allocation. For instance,
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Figure 3.4: Partitioned iteration space of the FIR filter algorithm as introduced in Ex­
ample 3.1. On the right, different interpretations of the processor allocation (LSGP
and LPGS) are shown.

if the iteration points within the tile (iteration space I1) should be executed in a se­
quential manner and each tile can work concurrently, the LSGP approach is at hand.
This corresponds to a total of eight processors running in parallel and each execut­
ing six iterations sequentially. The other way around, if six processor are working
in parallel on the points of one tile and afterwards on the next tile, and so on, the
partitioning corresponds to the LPGS approach. In order to distinguish between the
methods, the iteration spaces are named by the following convention.

• ILS and IGS denote iteration spaces where the iterations should be executed
one after the other.

• Ipa r denotes an iteration space where the iterations might be executed in par­
allel.
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3. Scheduling and Allocation

For the LSGP approach, the allocation (number of processors |Ipa r |) depends on the
size of original iteration space I. In case of the LPGS method, it is defined by the
size of the tile |det(T )| and is thus independent of the original size of the iteration
space.

If an n­dimensional iteration space is partitioned by the LSGP approach, the
space mapping is defined as follows.

p =Φ

�

ILS

Ipa r

�

+φ= (Z E)

�

ILS

Ipa r

�

+φ ∀ILS ∈ ILS ∧ Ipa r ∈ Ipa r

Where ILS and Ipa r are each n­dimensional iteration vectors and Z and E are an n×n
zero and identity matrix, respectively.

In the case that an n­dimensional iteration space is partitioned by the LPGS
method, the processor allocation is defined as follows.

p =Φ

�

Ipa r

IGS

�

+φ= (E Z)

�

Ipa r

IGS

�

+φ ∀Ipa r ∈ Ipa r ∧ IGS ∈ IGS

In conclusion, remark that, if an iteration space I ⊂ Zn is partitioned, the resulting
subspaces could also be of lower dimension than the original. This case occurs when
one facet of the tile entirely covers all iteration points within one direction of the
original iteration space. An example is given in the next section.

3.3.3 Hierarchical Partitioning

Hierarchical partitioning methods use different tiling matrices to divide the iteration
space on several levels. For instance, if an n­dimensional iteration space I is parti­
tioned twice, it is decomposed into the spaces I1, I2, and I3 such that I ⊆ I1⊕I2⊕I3.
The decomposition is defined as follows.

I1⊕ I2⊕ I3 =

¨

I = T1I1+T2I2+ I3 |
I1 ∈ I1 ∧ I2 ∈ I2 ∧ I3 ∈ I3

∧ T1,T2 ∈Z
n×n

«

(3.4)

Similarly an n­hierarchical partitioning method decomposes the iteration space I

into n+ 1 spaces.
As mentioned earlier, co­partitioning is one such example of a 2­level hierarchical

partitioning [EM97a]. It uses both LSGP and LPGS methods in order to balance
local memory requirements with the I/O bandwidth and having simultaneously the
advantage of problem size independence. In detail, the iteration space is first parti­
tioned into LS (locally sequential) tiles. This tiled iteration space is tiled once more
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Figure 3.5: Co­partitioned iteration space of the FIR filter algorithm of Example 3.1.
The processor array on the right side is defined by the number of LS tiles (gray tiles)
within a GS tile (dashed rectangle).

using GS (globally sequential) tiles as shown in Figure 3.5. Formally, by rewriting
Equation (3.4), the decomposition is given by

Ipa r ⊕ ILS ⊕ IGS =






I = ILS +TLS Ipa r +TGS IGS |

Ipa r ∈ Ipa r ∧ ILS ∈ ILS

∧ IGS ∈ IGS

∧ T LS ,T GS ∈ Zn×n







(3.5)

The two congruent tile types are defined by the tiling matrices TLS and TGS . Ipa r ⊂
Zn represents the origins of the LS tiles and ILS ⊂ Z

n represents the points within
the LS tiles (that is, the smaller gray tiles in Figure 3.5). IGS ⊂ Z

n accounts for
the regular repetition of the GS tiles (the bigger tiles marked with dashed lines in
Figure 3.5). Note that the number of LS tiles within a GS tile defines the number of
processors.
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In case that an n­dimensional iteration space is co­partitioned, the processor al­
location is defined as follows.

p =Φ







ILS

Ipa r

IGS






+φ= (Z E Z)







ILS

Ipa r

IGS






+φ ∀ILS ∈ ILS(3.6)

∧ Ipa r ∈ Ipa r ∧ IGS ∈ IGS

Here, ILS , Ipa r , and IGS are each n­dimensional iteration vectors and Z and E denote
the n× n zero and identity matrix, respectively.

Example 3.2 (Co­partitioned FIR filter). Let the FIR filter from Example 3.1 with
N = 6 and M = 8 being co­partitioned by the following tiling matrices (cf. Figure 3.5).

TLS =

�

2 0
0 3

�

TGS =

�

4 0
0 6

�

Normally, since the original iteration space is 2­dimensional, the co­partitioned space
would have 3 · 2 = 6 dimensions, but since the TGS tile is as wide as the iteration space,
five dimensions are sufficient in order to describe the partitioned algorithm.

a[i1, j1, i2, j2, i3] =A[i1, j1, i2, j2, i3] if i1 = 0 ∧ i2 = 0 ∧ i3 = 0

a[i1, j1, i2, j2, i3] = a[i1− 1, j1, i2, j2, i3] if i1 > 0

a[i1, j1, i2, j2, i3] = a[i1+ 1, j1, i2− 1, j2, i3] if i1 = 0 ∧ i2 > 0

a[i1, j1, i2, j2, i3] = a[i1+ 1, j1, i2+ 1, j2, i3− 1] if i1 = 0 ∧ i2 = 0 ∧ i3 > 0

u[i1, j1, i2, j2, i3] =U [i1, j1, i2, j2, i3] if j1 = 0 ∧ j2 = 0

u[i1, j1, i2, j2, i3] = 0 if i1 = 0 ∧ i2 = 0 ∧ i3 = 0

∧ j1+ j2 > 0

u[i1, j1, i2, j2, i3] = u[i1− 1, j1− 1, i2, j2, i3] if i1 > 0 ∧ j1 > 0

u[i1, j1, i2, j2, i3] = u[i1+ 1, j1− 1, i2− 1, j2, i3] if i1 = 0 ∧ j1 > 0 ∧ i2 > 0

u[i1, j1, i2, j2, i3] = u[i1− 1, j1+ 2, i2, j2− 1, i3] if i1 > 0 ∧ j1 = 0 ∧ j2 > 0

u[i1, j1, i2, j2, i3] = u[i1+ 1, j1+ 2, i2− 1, j2− 1, i3] if i1 = 0 ∧ j1 = 0 ∧ i2 > 0

∧ j2 > 0

u[i1, j1, i2, j2, i3] = u[i1+ 1, j1− 1, i2+ 1, j2, i3− 1] if i1 = 0 ∧ j1 > 0 ∧ i2 = 0

∧ i3 > 0

u[i1, j1, i2, j2, i3] = u[i1+ 1, j1+ 2, i2+ 1, j2− 1, i3− 1] if i1 = 0 ∧ j1 = 0 ∧ i2 = 0

∧ j2 > 0 ∧ i3 > 0

z[i1, j1, i2, j2, i3] = a[i1, j1, i2, j2, i3] · u[i1, j1, i2, j2, i3]

y[i1, j1, i2, j2, i3] = z[i1, j1, i2, j2, i3] if j1 = 0 ∧ j2 = 0

y[i1, j1, i2, j2, i3] = y[i1, j1− 1, i2, j2, i3]+ z[i1, j1, i2, j2, i3] if j1 > 0

y[i1, j1, i2, j2, i3] = y[i1, j1+ 2, i2, j2− 1, i3]+ z[i1, j1, i2, j2, i3] if j1 = 0 ∧ j2 > 0

Y [i1, j1, i2, j2, i3] = y[i1, j1, i2, j2, i3] if j1 = 2 ∧ j2 = 1
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The three iteration spaces are defined by

ILS =
¦

(i1 j1)
T ∈Z2 | 0≤ i1 ≤ 1 ∧ 0≤ j1 ≤ 2

©

Ipa r =
¦

(i2 j2)
T ∈Z2 | 0≤ i2 ≤ 1 ∧ 0≤ j2 ≤ 1

©

IGS = {i3 ∈ Z | 0≤ i3 ≤ 1}

3.4 Linear Scheduling

In this section, several important results by Darte and others [DKR92] are recapitu­
lated, which are important in the course of the thesis.

Let an algorithm with uniform data dependencies D = (d1, d2, . . . , dm) and a con­
vex iteration space I be given. Consider two iteration points I1, I2 ∈ I where I2

depends on I1, that is, I2 = I1+ di for some data dependence di ∈ D. In this case, we
write I2 ≻ I1.

Definition 3.3 (Schedule). A schedule for an algorithm with uniform data dependen­
cies with a corresponding convex iteration space I is a function t : I→ Z so that for any
iteration points I1, I2 ∈ I : t (I2)> t (I1) if I2 ≻ I1.

Definition 3.4 (Free schedule). A schedule for an algorithm with uniform data depen­
dencies with a corresponding convex iteration space I is called free or greedy if

t (I ) =

¨

0 if there exists no J : I ≻ J , i.e., J /∈ I
max(t (J ) : I , J ∈ I ∧ I ≻ J )+ 1 else

If a free schedule exist, it defines the fastest possible execution order of a given algo­
rithm.

Definition 3.5 (Linear schedule). Let an algorithm with uniform data dependencies
D = (d1, d2, . . . , dn) with a corresponding iteration space I be given. Then, a schedule is
called linear if

t (I ) = ⌊ΛI ⌋ ∀I ∈ I

where the linear schedule vector Λ ∈ Q1×n is such that Λdi ≥ 1 for all di ∈ D. This
condition [Lam74] ensures that all data dependencies are preserved.

Note that t (I ) is not necessarily a hyperplane since it can consist of several successive
parallel fronts if Λ is not integral. The use of floor functions with a rational schedul­
ing vector Λ turns out to be more powerful than restricting the search to integer
scheduling vectors [DR95].
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Various studies and experimental evaluations, for instance, the works in [FP84,
Pol88, SOF94], have shown that linear schedules allow the parallel computation of
nested loop programs with only low overhead in execution time. Fortes and Parisi­
Presiccein [FP84] already presumed that the difference between the execution time
of the linear and the corresponding free schedule is only a constant and that it is
invariant up to the size of the iteration space. This presumption has been proven by
Darte and others in [DKR92]. The authors have shown that for an arbitrary convex
iteration space that is sufficiently fat9, the difference between the total execution
time of the best linear schedule and that of the free schedule is bound by a constant
independent of the size of the iteration space.

The closeness of linear schedules to optimality is of great relevance since linear
schedules have many benefits, such as they are very simple and thus easy to use
in practice. Further, their simplicity results in a low implementation overhead for
control.

Darte et alii [DKR92] derived the following linear program for the determination
of an optimal schedule vector Λ for a given algorithm with uniform data dependen­
cies.

Input:
• Algorithm with data dependencies defined by matrix D

• Iteration space I is defined by a polyhedron I = {I ∈ Zn |AI ≥ b} where
A∈ Zm×n

Output:

• Schedule vector Λ ∈Q1×n

Program:

min − (y1+ y2)b

subject to y1A=Λ y1 ∈Q
1×m

y2A=−Λ y2 ∈Q
1×m

y1 ≥ 0

y2 ≥ 0

Λdi ≥ 1 ∀di ∈D

Linear scheduling

9An iteration space is called fat if it contains the zero vector, all data dependence vectors of a
corresponding algorithm, and all canonical basis vectors [DKR92].
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The derivation of the above linear program formulation as well as the meaning of
constraints and variables is described in the next section in the context of affine
scheduling.

3.5 Affine Scheduling

The concept of linear scheduling introduced in the last section is rather "coarse­
grained" since each iteration is considered as a whole. That means, just an optimal
execution order of the iterations with respect to the data dependencies is determined.
The derived schedules are only optimal if the iteration is atomic. However, most of
the time, one iteration (the loop body) consists of several operations. This leads to
the idea to have an offset for each operation of the iteration besides the linear part of
the schedule. We refer to this type of schedules as affine schedules10.

In the following algorithms in output normal form (see Chapter 4) with regular
data dependencies (cf. Section 2.1.1), defined over a convex iteration space I, are
considered. An elaboration of the codomain of the iteration space follows from case
to case later. These algorithms consist of one or more equations of the following
form.

xi[I ] =F (. . . , x j [I + de], . . .) I ∈ Ii ⊆ I(3.7)

When regarding scheduling, an equivalent representation in form of the reduced
dependence graph G = (V , E , D,W ) is considered. Hence, the terms variable xi of
an algorithm and node vi ∈V are used synonymously.

Formally, when an affine schedule is applied to the reduced dependence graph
G with the iteration space I, the calculation of a variable and the execution of an
operation xi[I ], respectively, for I ∈ I starts at time step

ti (I ) = ⌊ΛI + τ(vi )⌋(3.8)

where ti (I ) ∈Z, Λ ∈Q1×n, and τ(vi ) ∈Q.
The execution is finished at

ti (I )+wi = ⌊ΛI + τ(vi )+wi⌋(3.9)

where wi ∈ Z.
In our case, the primary objective of scheduling is to minimize the total execution

time for a given algorithm. This latency L is given by:

L=max
I2∈I

��

ΛI2+max
vi∈V

�
τ(vi )+wi

�
��

−min
I1∈I

��

ΛI1+min
vi∈V

�
τ(vi )

�
��

(3.10)

10The authors in [DR95] call this type of schedules affine with same linear part.
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In Equation (3.10), the first max­term denotes the latest execution time (ΛI2) of any
iteration point I2 ∈ I plus the finishing time of the last operation that is executed
at this iteration point. The subtrahend denotes the earliest execution time (ΛI1) of
any iteration iteration point I1 ∈ I plus the starting time of any operation that is
executed at this iteration point. It can be easily ensured that minvi∈V

�
τ(vi )

�
= 0 by

adding an offset. Hereby, Equation (3.10) can be simplified as follows.

L=max
I2∈I

��

ΛI2+max
vi∈V

�

τ(vi )+wi

�
��

−min
I1∈I
(⌊ΛI1⌋)

(3.11)

The total evaluation time is approximated [DR92, Thi95] by

L= max
I1,I2∈I

(Λ(I2− I1))+max
vi∈V

�
⌊τ(vi )+wi⌋

�
= Lg + Ll(3.12)

The global latency Lg denotes the time needed for the execution of the entire iteration
space and Ll is the local latency for computing a single iteration point. If the iteration
space I is defined by a polyhedron I = {I ∈ Zn |AI ≥ b}, where A ∈ Zm×n and
b ∈ Zm, the global latency Lg is given by the following formulation.

max Λ(I2− I1) Λ ∈Q1×n

subject to AI1 ≥ b

AI2 ≥ b

Since the schedule vector Λ as well as the iteration points I1, I2 are unknown, the
objective function is non­linear and thus not directly determinable. Using the du­
ality theorem of linear programming [Sch86, DR92, DKR92], the problem can be
rewritten as follows.

min − (y1+ y2)b

subject to y1A=Λ y1 ∈Q
1×m

y2A=−Λ y2 ∈Q
1×m

y1 ≥ 0

y2 ≥ 0

The implied data dependencies given as edge annotations of a reduced dependence
graph G = (V , E) have to be guaranteed. That is, for all edges (vi , v j ) ∈ E , the
computation of node v j cannot begin until the execution of node vi has finished.
Therefore, the starting time of v j must be at least wi greater than the starting time
of node vi . The corresponding precedence constraint

t j (I ) − ti (I − de)≥wi ∀ (vi , v j ) = e ∈ E
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together with Equation (3.8) directly leads to

Λde + τ(v j )− τ(vi )≥ wi ∀ (vi , v j ) = e ∈ E(3.13)

Note that if not the start times τ(vi ) for each individual node are considered sep­
arately but the entire iteration I with an execution time of one itself, Lamport’s
[Lam74] constraint Λde ≥ 1 is obtained for each dependence vector de .

In the following, the entire mixed integer program for affine scheduling is given
at a glance.

Input:
• Reduced dependence graph G = (V , E , D)

• Execution time wi ∈W of each node vi ∈V , W : V →Z

• Iteration space I is defined by a polyhedron I = {I ∈ Zn |AI ≥ b} where
A∈ Zm×n

Output:

• Schedule vector Λ ∈Q1×n

• Start times τ(vi ) ∈Q of all nodes vi ∈V

Program:

min − (y1+ y2)b

subject to y1A=Λ y1 ∈Q
1×m

y2A=−Λ y2 ∈Q
1×m

y1 ≥ 0

y2 ≥ 0

Λde + τ(v j )− τ(vi )≥ wi ∀e = (vi , v j ) ∈ E

Affine scheduling

The above MIP defines only an execution order of iterations I and nodes vi ∈V , but
does not take any resource constraints into account. If there are no data dependencies
(∀e ∈ E : de = 0) in a given program, this leads to a high degree of parallelism since
all iteration points can be executed concurrently. Therefore, in the next section,
projection is considered as an allocation to assign iterations to processors.
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3.5.1 Affine Scheduling with Projection as Allocation

As described in Section 3.3.1, allocation of iterations to processors by a given projec­
tion direction u, leads to the execution of all iteration points, satisfying QI = const
on the same processor. Since all iterations, satisfying the aforementioned condition,
cannot be executed on the same processor simultaneously, they have to be serialized
in an appropriate manner. Using an affine function for scheduling results in a con­
stant interval for the successive execution of different iteration points on the same
processor. This interval is called iteration interval, initiation interval [RST92], or
period.

Definition 3.6 (Iteration interval). The iteration interval P ∈ Z of an allocated and
scheduled algorithm with regular data dependencies is the number of time instances be­
tween the evaluation of two successive instances of a variable within one processor.

Theorem 3.1 (Iteration interval for projection [Thi95]). The iteration interval P of
an allocated and scheduled algorithm with regular data dependencies is given by

P = |Λu|.(3.14)

Proof. The computations of variables xi[I0+αu] assigned to one processing element
are finished at times ΛI + τ(vi ) +wi = ΛI0 + αΛu + τ(vi ) +wi . Two neighboring
instances, that is xi[I0+αu] and xi[I0+ (α± 1)u], have a distance in time of ∆t =
±Λu. As the iteration interval is positive, we have P = |Λu|.

3.5.1.1 Determination of the Iteration Interval

In order to satisfy the condition in Equation (3.14), we have to formulate the abso­
lute value of Λu and consider two different cases.

Case 1: Iteration interval P is given as a constant.
This case typically applies if scheduling shall be performed to obtain a given through­
put. However, since the projection vector u is also given, it can happen that no valid
schedule can be found and P has to be relaxed. This procedure of successive variation
of the iteration interval leads to another typical approach, where a latency­optimal
schedule shall be derived for a minimal P and the throughput is maximized, respec­
tively.

A minimal iteration interval can be derived by starting with the value of one
and successively increasing it until a solution is found. In order to accelerate this
procedure, a bisectioning algorithm for P ∈ [1..Pmax] is applied. The upper bound
Pmax can be selected as the sum of worst case execution times of all nodes of the
RDG. Since for larger P , more variables and constraints in the MIP are generated
and therefore, an asymmetric bisection method is recommended.
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Theorem 3.2 (MIP constraints for a constant iteration interval). Given a projection
direction u ∈ Zn and an iteration interval P ∈Z, P > 0, the projection vector u accord­
ing to Definition 3.6 must satisfy

Λu ≥ P − 2βu P(3.15)

Λu ≤ P(3.16)

−Λu ≥ P − 2(1−βu)P(3.17)

−Λu ≤ P(3.18)

where βu ∈ {0,1}.

Proof. Since the iteration interval P is a positive integral number, two cases have to
be considered.

• Assumption, Λu > 0:
If Λu > 0, βu is forced to be 0. The inequalities in Equation (3.15) and
Equation (3.16) lead to Λu = P . Otherwise, if βu = 1, the inequality in
Equation (3.17) is not satisfied (−Λu ≥ 0), which is a contradiction to the
assumption.

• Assumption, Λu < 0:
If Λu < 0, βu is forced to be 1. The inequalities in Equation (3.17) and
in Equation (3.18) lead to −Λu = P . Otherwise, if βu = 0, the inequality
in Equation (3.16) is not satisfied (Λu ≥ 0), which is a contradiction to the
assumption.

Case 2: Iteration interval P is a variable of the MIP.
In this case, the iteration interval is not a fixed parameter. Thus, it has to be con­
sidered as a variable P in the linear program. Let Pmax be an upper bound of the
iteration interval, then the absolute value |Λu| can be determined by the set of in­
equalities given in Theorem 3.3.
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Theorem 3.3 (MIP constraints for a variable iteration interval). Given a projection
direction u ∈ Zn, an iteration interval P ∈ Z, P > 0, and an upper bound Pmax ∈ Z for
P . Then the projection vector u according to Definition 3.6 satisfies

P ≤ Pmax

Λu ≥ P − 2βu Pmax

Λu ≤ P

−Λu ≥ P − 2(1−βu)Pmax

−Λu ≤ P

P =
Pmax∑

l=1

l pl(3.19)

Pmax∑

l=1

pl = 1(3.20)

where βu , pl ∈ {0,1}.

Proof. Equation (3.19) encodes the iteration interval P by binary variables pl . If a
binary variable pl is 1, P equals l . The constraint in Equation (3.20) ensures that
exactly one value for P ∈ [1, Pmax] of Equation (3.19) is selected. The rest of the
proof is analogous to the one of Theorem 3.2.

In summary, the entire MIP for affine scheduling taking a given projection direc­
tion u into account is given in the following.

Input:
• Reduced dependence graph G = (V , E , D)

• Execution time wi ∈W of each node vi ∈V , W : V →Z

• Iteration space I is defined by a polyhedron I = {I ∈Zn |AI ≥ b} where
A∈Zm×n

• Projection vector u ∈ Zn

• The iteration interval P is given or not, as the case may be

Affine scheduling with projection as allocation
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Output:
• Schedule vector Λ ∈Q1×n

• Start times τ(vi ) ∈Q of all nodes vi ∈V

• Iteration interval P in case it is not given
Program:

min − (y1+ y2)b

subject to y1A=Λ y1 ∈Q
1×m

y2A=−Λ y2 ∈Q
1×m

y1 ≥ 0

y2 ≥ 0

Λde + τ(v j )− τ(vi )≥ wi ∀ e = (vi , v j ) ∈ E

〈P ≤ Pmax Pmax ∈Z〉

Λu ≥ P − 2βu Pmax βu ∈ {0,1}

Λu ≤ P

−Λu ≥ P − 2(1−βu)Pmax

−Λu ≤ P
*

P =
Pmax∑

l=1

l pl pl ∈ {0,1}

+

*
Pmax∑

l=1

pl = 1

+

If P is given, Pmax becomes P and the optional constraints denoted by 〈·〉 can be
omitted.

 

3.5.1.2 Linearly Bounded Lattice as Iteration Space

All of the aforementioned scheduling methods consider an n­dimensional polyhe­
dron P, intersected by Zn, as iteration space I = P ∩Zn. For the sake of complete­
ness, the scheduling methods are extended to more general iteration domains, in the
form of linearly bounded lattices given by I = {I ∈Zn | I =Mc+ c ∧ Ac≥ b}.

In case the matrix M is square and invertible, Thiele proposed in [Thi95] an
appropriate MIP formulation.
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Input:
• Reduced dependence graph G = (V , E , D)

• Execution time wi ∈W of each node vi ∈V , W : V →Z

• Iteration space I is defined by a linearly bounded lattice
I = {I ∈ Zn | I =Mc+ c ∧ Ac≥ b} where M ∈Zn×n and A∈Zm×n

• Projection vector u ∈ Zn

• The iteration interval P is given or not, as the case may be
Output:

• Schedule vector Λ ∈Q1×n

• Start times τ(vi ) ∈Q of all nodes vi ∈V

• Iteration interval P in case it is not given

Program:

min − (y1+ y2)b

subject to Λ=Λ′M−1

y1A=Λ′ y1 ∈Q
1×m

y2A=−Λ′ y2 ∈Q
1×m

y1 ≥ 0

y2 ≥ 0

Λ′adj(M )de ≥ |det(M )|(τ(vi )− τ(v j ))+wi ∀ e = (vi , v j ) ∈ E

〈P ≤ Pmax Pmax ∈Z〉

Λ′adj(M )u ≥ |det(M )|(P − 2βu Pmax ) βu ∈ {0,1}

Λ′adj(M )u ≤ |det(M )|P

−Λ′adj(M )u ≥ |det(M )|(P − 2(1−βu)Pmax )

−Λ′adj(M )u ≤ |det(M )|P
*

P =
Pmax∑

l=1

l pl pl ∈ {0,1}

+

*
Pmax∑

l=1

pl = 1

+

If P is given, Pmax becomes P and the optional constraints denoted by 〈·〉 can be
omitted.

Affine scheduling for LBLs with projection as allocation
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3.5.2 Affine Scheduling with Partitioning as Allocation

In this section, constraints for the mixed integer programs are developed in order to
cope with single and hierarchically partitioned algorithms. The main contribution
are novel serialization constraints to ensure the right execution of LS and GS tiles
(cf. Section 3.3.2).

Before formulating the appropriate serialization constraints and MIPs for several
different partitioning methods, the concept of strides is introduced.

3.5.2.1 Determination of Strides and Path Strides

Definition 3.7 (Stride). The stride of a loop denotes an incremental or decremental step
of an iteration variable. Sometimes, the stride is also referred to as step size or increment.
A stride of size one is denoted as unit stride. If several loops are nested, each iteration
variable has its own stride independent of outer loops. The sequential ordering of an
iteration space in form of an n­dimensional parallelotope can be represented by a stride
matrix S ∈ Zn×n, containing n strides si ∈Z

n.

S = (s1 s2 . . . sn)(3.21)

Here, operations corresponding to iteration points in direction of s1 are executed one after
another, operations in direction of s2 are separated in time by blocks of operations in
direction s1 and so on.

The sequential proceeding of iteration points is named scanning.

Definition 3.8 (Path stride). The path strides of an n­dimensional parallelotope are

represented by a matrix ~S ∈ Zn×n containing n vectors~si ∈ Z
n.

~S = (~s1 ~s2 . . . ~sn)(3.22)

Here, in contrast to Definition 3.7, the strides depend on each other and on the size of the
considered parallelotope so that a connected path is represented. That is, after several—
depending on the size of the iteration space—steps ~s1 to an iteration point I , ~s2 denotes
a vector from I to the next block of iterations. Remark: The first stride of matrix S is

identical to the first path stride of matrix ~S , s1 ≡~s1.

Definition 3.7 and Definition 3.8 are illustrated by two examples in the following.
Consider the following nested loop.

for (j=0 to 6 step 2)

{ for (i=0 to 7)

{ ...

}

}

79



3. Scheduling and Allocation

The inner loop of the program has unit stride. The outer loop has a stride of two.
The combination of both strides in a stride matrix S results in:

S =

�

1 0
0 2

�

The path strides are given by

~S =

�

1 −7
0 2

�

which can be verified by the illustration in Figure 3.6.
In case of arbitrary parallelotopes, in particular non­rectangular parallelotopes,

the derivation of the path strides might not be intuitive since the path can abandon
the bounds of the iteration domain. This behavior is shown in Figure 3.7 where the
parallelogram defined by

I =
¦

(i j )T ∈ Z2 | 0≤ 2i + 4 j < 20 ∧ 0≤ 2i − 6 j < 20
©

(3.23)

is scanned in two different ways.
It raises the question of how the path strides can be calculated for a given par­

allelotope. For this purpose, we introduce the alternative concept of loop matri­
ces11 [TTZ97, DHT06c] that expresses the iteration domain as well as the scanning
directions.

Definition 3.9 (Loop matrix). A nonsingular12 loop matrix R = (r1 r2 . . . rn) ∈
Zn×n consists of n loop vectors that determine the ordering of iteration points within
a parallelotope­shaped tile. Iteration points in direction of r1 are mapped side by side.
Iteration points in direction r2 are separated by blocks of points in direction r1 and so
on. The ordering is similar to a sequential nested loop program where the loop index ik

corresponds to iteration in direction of rk . The inner loop index is i1 and the the outermost
loop index is in.

The length of the loop vectors is chosen in such a way that the iteration space Is e q of
the tile is spanned.

Is e q = {I ∈Z
n | I = Rc ∧ z ≤ c< o} c ∈Qn, z = (0 . . . 0)T ∈Zn(3.24)

o = (1 . . . 1)T ∈Zn

According to the theorem of Minkowski [Sch86], we call the representation in Equa­
tion (3.24) Minkowski characterization.

11A similar definition is also used by Agarwal and others [AKN95], which is homely named the L
matrix. However, their concept defines only the tile shape but not the iteration directions.

12A square matrix A that is not singular. That means, A has a matrix inverse A−1.
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8 

(a)

(b)

i

i

j

j

s1

s2

~s1

~s2

Figure 3.6: Sequential processing of a rectangular domain. In (a), the strides are
depicted. (b) shows the corresponding path and the path strides (bold arrows), re­
spectively.

The loop vectors of the parallelogram introduced in Figure 3.7(a) are given by

R= (r1 r2) =

�

6 4
2 −2

�

(3.25)
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13

(a)

(b)

i

i

j

j

~s1

~s1

~s2

~s2

Figure 3.7: Sequential processing of an iteration space defined by a parallelogram.
Two different execution orders and the path strides (bold arrows) are shown in (a)
and (b), respectively. Integral points on the dashed borders of the polytope do not
belong to it.

and are visualized in Figure 3.8.
Let a loop matrix R be given, then, in addition to the Minkowski characterization

in Equation (3.24), the dual equivalent implicit definition of the parallelotope can be
determined as follows.
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11

i

j

r1 =

�
6
2

�

r2 =

�
4
−2

�

Figure 3.8: Tile shape with loop vectors r1 and r2. Integral points on the dashed
borders of the polytope do not belong to it.

Theorem 3.4 (Implicit definition of a tile). Let a tile be represented by its Minkowski
characterization as defined in Equation (3.24). Then, the following implicit definition
is equivalent.

Is e q = {I ∈Z
n | AI ≥ b}(3.26)

=

¨

I ∈ Zn |

�

σadj(R)
−σadj(R)

�

I ≥

�

z
w −σ det(R)o

�«

where

σ =
det(R)

|det(R)|
z = (0 . . . 0)T ∈ Zn

o = (1 . . . 1)T ∈ Zn

w = (w1 w2 . . . wn)
T ∈ Zn

with wi =
1

gi

n∏

j=1

g j ∀1≤ i ≤ n

and gk = gcd
∀l={1,2,...,n}

(rl ,k) ∀k ∈ {i , j }

A variable gk denotes the greatest common denominator of all elements of loop vector rk .
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Proof. We start with the characterization as given in Equation (3.24). Since R is
nonsingular, we can write:

Is e q = {I ∈Z
n | I = Rc ∧ z ≤ c< o}

=
�

I ∈ Zn | z ≤ R−1I < o
	

=

¨

I ∈ Zn | z ≤
adj(R)

det(R)
I < o

«

= {I ∈Zn | z ≤ σadj(R)I < σ det(R)o}

The extraction of the greatest common denominator from each column ri of R leads
to:

R= (r1 r2 . . . rn) = (r
′
1

r ′
2

. . . r ′
n
)G where G =










g1 0 . . . 0

0 g2
. . . ...

... . . . . . . 0
0 . . . 0 gn










adj(R) = adj
�

(r ′
1

r ′
2

. . . r ′
n
)G
�

= adj(G)adj
�

(r ′
1

r ′
2

. . . r ′
n
)
�

= det(G)G−1adj
�

(r ′
1

r ′
2

. . . r ′
n
)
�

=

 
n∏

i=1

gi

!










1/g1 0 . . . 0

0 1/g2
. . . ...

... .. . . . . 0
0 . . . 0 1/gn










adj
�

(r ′
1

r ′
2

. . . r ′
n
)
�

=










w1 0 . . . 0

0 w2
. .. ...

... . .. . .. 0
0 . . . 0 wn










adj
�

(r ′
1

r ′
2

. . . r ′
n
)
�

⇒

Is e q =









I ∈ Zn | z ≤ σ










w1 0 . . . 0

0 w2
. .. ...

... . .. . .. 0
0 . . . 0 wn










adj
�

(r ′
1

r ′
2

. . . r ′
n
)
�

I < σ det(R)o








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Since det(R) is divisible by wi without remainder as the following intermediate

step proves, det(R) = det
�

(r ′
1

r ′
2

. . . r ′
n
)
�

det(G) = det
�

(r ′
1

r ′
2

. . . r ′
n
)
��∏n

j=1
g j

�

=

det
�

(r ′
1

r ′
2

. . . r ′
n
)
�

wi gi for all 1≤ i ≤ n, we can finally write:

Is e q =









I ∈ Zn | z ≤ σadj(R)I ≤









σ det(R)−w1

σ det(R)−w2
...

σ det(R)−wn

















=

¨

I ∈Zn |

�

σadj(R)
−σadj(R)

�

I ≥

�

z
w −σ det(R)o

�«

One remark, the authors in [TT93, DHT06c] propose a construction method sim­
ilar to the method presented in Theorem 3.4 but with a crucial difference: They
use σadj(R)I ≤ (σ det(R) − 1)o as upper bounds of the polytope, whereas we use
σadj(R)I ≤ σ det(R)o − w. That means, instead of subtracting 1 from each right
hand side of the inequalities, we subtract wi . This novel construction method leads
to considerably tighter bounds of the polytope, avoids rational weighted half spaces,
and is essential in the course of the thesis.

Coming back to the initial question how can the path strides be obtained? In
summary, we propose the following approach.

1. The tile space Is e q , given by an n­dimensional loop matrix R, will be trans­
formed to an integral space that is spanned by n canonical vectors13. In the
following, we call this space also orthogonal.

2. Determine the path strides in the orthogonal space.

3. Transform the path strides back to the original space.

The consideration of the orthogonal space has the advantage that therein scanning
can be performed in a monotonically increasing manner with respect to the lexico­
graphic order.

Before we systematically describe the proposed approach, we demonstrate the
procedure by means of our running example (the parallelogram in Equation (3.23)).
We assume the following transformation is appropriate for the first step of our pro­
posed approach.

Is e q = {I ∈ Z
n | AI ≥ b} ⇒ I

′
s e q
=
�

I ′ ∈Zn | AT −1I ′ ≥ b
	

13A canonical vector e = (e1 . . . ei . . . en)
T ∈ Zn , 1 ≤ i ≤ n is a vector with a one in the i th

coordinate and zero elsewhere.
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where

T =

�

1 2
1 −3

�

T −1 =
1

5

�

3 2
1 −1

�

(3.27)

The transformation to the orthogonal domain defined by i ′, j ′ is done using the
transformation matrix T , (i ′ j ′)T = T (i j )T. The transformed parallelogram is de­
fined by

I
′
s e q
=









�

i ′

j ′

�

∈ Z2 |









2 4
2 −6
−2 −4
−2 6









�
3
5

2
5

1
5
−1
5

��

i ′

j ′

�

≥









0
0
−19
−19

















=









�

i ′

j ′

�

∈ Z2 |









1 0
0 1
−2 0

0 −2









�

i ′

j ′

�

≥









0
0
−19
−19

















=









�

i ′

j ′

�

∈ Z2 |









1 0
0 1
−1 0

0 −1









�

i ′

j ′

�

≥









0
0
−9
−9

















The transformation of the iteration space is depicted in Figure 3.9. The gray iter­
ation points in Figure 3.9(b) have no images in the original, which can be easily
verified from (i j )T = T −1(i ′ j ′)T and the fact that the matrix T −1 has rational ele­
ments. Hence, the gray iteration points have rational images in the original domain.
These points are also known as holes [Ram95, TKD02, Bas03, Bas04, TKD05]. The
problem of scanning the transformed domain is to avoid the holes by using a suit­
able step size (stride) for each iteration variable and adapting the bounds of the loop
nest. In many papers, the authors propose to solve the problem of avoiding holes by
using the Hermite normal form [Sch86]. For instance, Li and Pingali [LP92, LP94],
Xue [Xue94], Ramanujam [Ram92, Ram95], and Fernández and others [FLV95]
discuss such a method for non­unimodular loop transformations. Darte and Robert
[DR94b] apply the Hermite normal form when using projection as processor allo­
cation. Other authors employ the form for code generation of partitioned iteration
spaces [GAK03], as well as for efficient control generation [Bas03, Bas04, VBC06].

In linear algebra, the Hermite normal form is a triangular matrix H that is de­
rived when transforming a given matrix A by a unimodular14 matrix U . In addi­
tion, a certain set of conditions on the elements of H is specified, which makes H ,

14A real square matrix A∈Rn×n is said to be unimodular if its determinant det(A) =±1.
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(a)

(b)

i

j

i ′

j ′

r1

r2

~s ′
1

~s ′
2

Figure 3.9: In (a), the original tile and in (b) the transformed domain is shown. The
white iteration points denote the original and transformed integral points, respec­
tively.

and therefore also U , unique. The transformation goes back to the mathematician
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Charles Hermite [Her51]. There exist several slightly different definitions of the
Hermite normal form, for instance, if H is an upper right triangular or a lower left
triangular matrix (see for instance Domich et al. [DKT87]). In the following, we use
as definition an upper right triangular matrix for the Hermite normal form H .

Definition 3.10 (Hermite normal form). Given a square nonsingular integer matrix
A ∈ Zn×n, there exists an unimodular matrix U ∈ Zn×n and a matrix H ∈ Zn×n—
known as the Hermite normal form (HNF) of A—such that

H =AU

The entries of H satisfy:

1. H is a upper right triangular, that is, hi , j = 0 for all i > j ,

2. hi ,i > 0 for all i , and

3. hi ,i > hi , j ≥ 0 for all i < j .

The right multiplication of A by an unimodular matrix U corresponds to a sequence
of the following elementary column operations.

1. Interchange two columns.

2. Multiply a column by ­1.

3. Add an integral multiple of one column to another.

The Hermite normal form can be found in polynomial time by using a sequence of
the above defined elementary column operations [Sch86].

Application of the Hermite normal form to our example or rather, to the trans­
formation matrix T , results in the following decomposition.

H = T U

H =

�

5 1
0 1

�

T =

�

1 2
1 −3

�

U =

�

3 1
1 0

�

Since the columns of T and H generate the same lattice, the diagonal elements of
matrix H directly represent the strides of i ′ and j ′. Namely, 5 in direction of i ′ and
unit stride in direction of j ′.

S ′ =
�

s ′
1

s ′
2

�

=

�

5 0
0 1

�
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The corresponding path strides are~s ′
1
= s ′

1
and~s ′

2
= (−9 0)T+ s ′

2
, which can be verified

in Figure 3.9.

~S ′ =
�

~s ′
1
~s ′

2

�

=

�

5 −9
0 1

�

Subsequently, the sought after path strides ~S of the original parallelogram can be
obtained by inverse transformation (cf. Figure3.7(a)).

~S = T −1~S ′ =

�
3
5

2
5

1
5
− 1

5

��

5 −9
0 1

�

=

�

3 −5
1 −2

�

Before we formally present a theorem (Theorem 3.5) and prove how to transform a
given parallelotope to an equivalent orthotope15, we formulate two general lemmas.

Lemma 3.1 (Determinant property). Let a matrix A ∈ Rn×n and a scalar c ∈ R be
given. Then, the property det(cA) = c n det(A) holds.

Proof. In general, it is easy to see that det(cE) = c n, where E is the n × n identity
matrix. From this follows that det(cA) = det(cEA) = det(cE)det(A) = c n det(A)
which concludes the proof.

Lemma 3.2 (Adjugate/determinant relationship). Let a matrix A ∈ Rn×n be given.
The adjugate of A has the property:

det (adj(A)) = det(A)n−1

Proof. Since Aadj(A) = det(A)E [Str03], then taking the determinant of both sides
and consideration of E is an n× n matrix, we have

det(A)det (adj(A)) = det(A)n

If det(A) 6= 0, then the relation det(adj(A)) = det(A)n−1 follows at once. If det(A) = 0,
then A and its adjugate matrix are singular, and consequently also det (adj(A)) = 0.
Thus det (adj(A)) = det(A)n−1 = 0.

Theorem 3.5 (Orthogonal transformation). Let a loop matrix R ∈ Zn×n, which is
equivalently represented by a parallelotope Is e q = {I ∈ Z

n | AI ≥ b}, be given. If a
matrix T ∈Zn×n is chosen to be

T = σW −1adj(R) with W =










w1 0 . . . 0

0 w2
. .. ...

... . .. . .. 0
0 . . . 0 wn










(3.28)

15An orthotope is a parallelotope whose edges are all mutually orthogonal to each other. The
orthotope is a generalization of the rectangle and rectangular parallelepiped.
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where σ and wi , 1 ≤ i ≤ n are defined as in Theorem 3.4, then the polytope I ′
s e q
=

�

I ′ ∈Zn | AT −1I ′ ≥ b
	

is an orthogonal transformation of Is e q. That is, the basis of
I ′

s e q
is spanned by n weighted canonical vectors.

Proof. The transformation of Equation (3.28) into W T = σadj(R) and its insertion
in the construction rule leads to

Is e q =

�

I ∈ Zn |

�

W T
−W T

�

I ≥

�

z
w −σ det(R)o

��

⇒ I
′
s e q
=

�

I ′ ∈ Zn |

�
W T T −1

−W T T −1

�

I ′ ≥

�
z

w −σ det(R)o

��

=

�

I ′ ∈ Zn |

�
E
−W

�

︸ ︷︷ ︸

A′

I ′ ≥

�
z

w −σ det(R)o

��

Hence, it is shown that the basis of I ′
s e q

is spanned only by orthogonal vectors since
matrix A′ has only canonical row vectors weighted by a constant.

It remains to show that the volume16 is related to the original parallelotope Is e q.
Since Is e q is dense, its volume V (Is e q) equals |det(R)|. The number of valid integral
points (points that are no holes) is given by transforming I ′

s e q
by the nonsingular

stride matrix S ′ ∈Zn×n.

S ′ =










h1,1 0 . . . 0

0 h2,2
.. . ...

... .. . .. . 0
0 . . . 0 hn,n










(3.29)

where hi ,i , 1 ≤ i ≤ n are the diagonal elements of the Hermite normal form of the
transformation matrix T (H = T U ). From this follows a dense orthogonal iteration
space I ′′

s e q
.

I
′′
s e q
=

¨

I ′′ ∈ Zn |

�

E
−W S ′

�

I ′′ ≥

�

z
w −σ det(R)o

�«

I ′′
s e q

is an orthotope, thus its volume can be calculated as follows.

V (I ′′
s e q
) =

$

σ det(R)−w1

s ′
1,1

w1

+ 1

%

·

$

σ det(R)−w2

s ′
2,2

w2

+ 1

%

· . . . ·

$

σ det(R)−wn

s ′
n,n

wn

+ 1

%

16The volume of an n­dimensional polytope I ⊂Zn is the number of all integral points inside I.
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det(R) is divisible by s ′
i ,i

wi , 1≤ i ≤ n without remainder, thus we can write

V (I ′′
s e q
) =

 

σ det(R)

s ′
1,1

w1

+

$

1−
1

s ′
1,1

%!

· . . . ·

 

σ det(R)

s ′
n,n

wn

+

$

1−
1

s ′
n,n

%!

The floor functions17 can be removed by taking into account that s ′
i ,i
> 0, 1≤ i ≤ n.

V (I ′′
s e q
) =
σ det(R)

s ′
1,1

w1

·
σ det(R)

s ′
2,2

w2

· . . . ·
σ det(R)

s ′
n,n

wn

= (σ det(R))n
n∏

i=1

1

s ′
i ,i

wi

= σn
det(R)n

det(H )det(W )

We have to show the equivalence of the volumes of Is e q and I ′′
s e q

:

V (Is e q) =V (I ′′
s e q
)

⇔ |det(R)|= σn
det(R)n

det(H )det(W )

⇔ σ det(R) = σn
det(R)n

det(H )det(W )

⇔ σ det(T U )det(W ) = σn det(R)n−1

By application of Equation (3.28), we obtain:

σ det
�
σW −1adj(R)U

�
det(W ) = σn det(R)n−1

Lemma 3.1 leads to:

σσn det (adj(R))det(U ) = σn det(R)n−1

⇔ det (adj(R)) = det(R)n−1

Finally, we conclude the proof by Lemma 3.2.

The application of Theorem 3.5 to the parallelogram defined in Equation (3.23)
with the loop matrix given in Equation (3.25) results in

T =

�

1 2
1 −3

�

T −1 =
1

5

�

3 2
1 −1

�

which is the same transformation matrix as in Equation (3.27) on page 86. Recapit­
ulate the transformed iteration space: I ′

s e q
=
�
(i ′ j ′)T ∈Z2 | 0≤ i ′, j ′ ≤ 9

	

Once the orthogonal space I ′
s e q

has been derived, the path strides of it and the
original space can be determined by the following construction rule.

17The floor function is defined by ⌊x⌋=max {z ∈ Z | z ≤ x}.

91



3. Scheduling and Allocation

Corollary 3.1 (Path strides). From Theorem 3.5 and its proof, it follows how the path

strides ~S can be obtained:

~S = T −1~S ′ = T −1










S ′+










0 h̄1,2 . . . h̄1,n
...

.. . . . .
...

...
.. . . . . h̄n−1,n

0 . . . . . . 0



















(3.30)

The coefficients h̄i , j for all 1≤ i ≤ n− 1 and i < j ≤ n are calculated as follows.

h̄i , j = hi , j −

$
hi , j + li

hi ,i

%

hi ,i

Where li =
σ det(R)−wi

wi
denotes the side length of the orthotope I ′

s e q
in direction i .

Proof. Considering, for instance, Figure 3.9(b), the idea of determination of the path
strides is very intuitive. By Definition 3.10, the Hermite normal form H has only
non­negative elements. Therefore, at first, several steps (say x steps) of length s ′

1
in

the first direction are made until the bound of the orthotope is reached. Then, it
is necessary to jump back these steps and make one step of length s ′

2
in the second

direction, once again x steps in the first direction, jump back, and so on. Hence,
to scan all valid iteration points (lattice points) in one direction i , x = li/s

′
i

steps in
that direction and a jump back by −x s ′

i
have to be made. Let the length of the jump

back be −bi = || − x s ′
i
||. Consequently, it follows that −bi ≤ li and bi = hi ,i x. In

order to catch all valid iteration points, li + bi has to be minimized, which leads to
j

hi , j+li

hi ,i

k

hi ,i . Nota bene, to obtain appropriate path strides, they have to be a linear

combination of the lattice defined by H . Thus, taking the position i , j in matrix H

into account, we obtain hi , j −
j

hi , j+li

hi ,i

k

hi ,i .

Our proposed method for the computation of the path strides is most likely to
be associated with the work for scanning polyhedra without do­loops by Boulet
and Feautrier [BF98]. However, the two approaches are totally different, since our
method is entirely based on linear algebra, whereas their method heavily relies on
parametric integer programming [Fea88].

Once the path strides are calculated, the sequentialization constraints of the
mixed integer program can be formulated.
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3.5.2.2 Sequentialization Constraint

We have to require that the operations corresponding to a node vi are executed
sequentially within a tile Is e q .

Λs e q(I1− I2) 6= 0 ∀I1, I2 ∈ Is e q ∧ I1 6= I2(3.31)

Since the condition in Equation (3.31) is a quadratic term, it cannot be directly
incorporated into a MIP formulation, but has to be linearized. In case that Is e q is a
parallelotope, the condition in Equation (3.31) is satisfied by the following theorem.

Theorem 3.6 (Sequentialization constraint). Let a loop matrix R be given, which de­
notes the shape and the execution order of a parallelotope­shaped tile. Then, the following
constraints ensure that all iteration points within the tile are executed at different time
steps.

Λs e q
~S ≥ o

where Λs e q denotes the schedule vector (sequential execution order) of the tile, ~S the ma­
trix of the path strides (cf. Corollary 3.1) according to the given loop matrix R, and
o = (1 . . . 1) ∈Z1×n.

Proof. In terms of execution order, let an iteration point I2 be the direct successor of
an iteration point I1, where~si = I2− I1. That is, I1 must be executed before I2, which
means Λs e q(I2− I1) = Λs e q~si > 0. This condition has to be satisfied for all path strides

~si ∈
~S .

3.5.2.3 Mixed Integer Program for LSGP and LPGS Partitioned Algorithms

Consider a given DPRA, which is locally sequential, globally parallel partitioned such
that its iteration space I is decomposed into I ⊆ ILS ⊕ Ipa r . The locally sequential
part of the iteration space is denoted by ILS ⊂ Z

n and a corresponding loop matrix
RLS . The parallel part of the iteration space is denoted by Ipa r ⊂ Z

n. A scheduling
function for a node vi according to the decomposition is given by

ti (ILS , Ipa r ) = (ΛLS Λpa r )

�

ILS

Ipa r

�

+ τ(vi )

Furthermore, let the iteration interval P be given without loss of generality18. Since
a periodic execution within one tile with a corresponding period P is required, we
have to formulate the following constraint.

Λs e q = PΛ′
s e q

Λ′
s e q
∈Z1×n

18Note, this is no restriction since the same concepts as discussed in Section 3.5.1.1 can be applied.
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Then, a latency optimal solution for affine scheduling, which takes LSGP into ac­
count, can be obtained by solving the following MIP.

Input:
• Reduced dependence graph G = (V , E , D)

• Execution time wi ∈W of each node vi ∈V , W : V →Z

• Iteration space I ⊆ ILS ⊕ Ipa r defined by

◦ ILS = {I ∈Z
n |ALS I ≥ bLS} where ALS ∈ Z

2n×n

◦ Ipa r = {I ∈ Z
n |Apa r I ≥ bpa r} where Apa r ∈ Z

m×n

• Loop matrix RLS and a matrix ~SLS with the corresponding path strides

• Iteration interval P
Output:

• Schedule vector (ΛLS Λpa r ) ∈ Z
1×2n, start times τ(vi ) of all nodes vi ∈V

Program:

min − (y1+ y2)bLS − (y3+ y4)bpa r

subject to y1ALS =ΛLS y1 ∈Q
1×2n

y2ALS =−ΛLS y2 ∈Q
1×2n

y3Apa r =Λpa r y3 ∈Q
1×m

y4Apa r =−Λpa r y4 ∈Q
1×m

y1, y2, y3, y4 ≥ 0

(ΛLS Λpa r )de + τ(v j )− τ(vi )≥ wi ∀ e = (vi , v j ) ∈ E

ΛLS = PΛ′
LS

Λ′
LS
∈Z1×n

ΛLS
~SLS ≥ o o = (1 . . . 1) ∈Z1×n

Affine scheduling with LSGP partitioning as allocation

Similar to LSGP, we can consider an algorithm, which is locally parallel, globally
sequential partitioned such that its iteration space I is decomposed into I ⊆ IGS ⊕
Ipa r . The globally sequential part of the iteration space is denoted by IGS ⊂ Z

n and
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the corresponding loop matrix RGS , whereas the parallel part is denoted by Ipa r ⊂
Zn. A scheduling function for a node vi according to the decomposition is given by

ti (IGS , Ipa r ) = (ΛGS Λpa r )

�

IGS

Ipa r

�

+ τ(vi )

A latency optimal solution for affine scheduling, which takes LPGS into account, is
given by the solution of the following MIP.

Input:
• Reduced dependence graph G = (V , E , D)

• Execution time wi ∈W of each node vi ∈V , W : V →Z

• Iteration space I ⊆ IGS ⊕ Ipa r defined by

◦ IGS = {I ∈ Z
n |AGS I ≥ bGS} where AGS ∈Z

2n×n

◦ Ipa r = {I ∈ Z
n |Apa r I ≥ bpa r} where Apa r ∈ Z

m×n

• Loop matrix RGS and a matrix ~SGS with the corresponding path strides

• Iteration interval P
Output:

• Schedule vector (ΛGS Λpa r ) ∈Z
1×2n, start times τ(vi ) of all nodes vi ∈V

Program:

min − (y1+ y2)bGS − (y3+ y4)bpa r

subject to y1AGS =ΛGS y1 ∈Q
1×2n

y2AGS =−ΛGS y2 ∈Q
1×2n

y3Apa r =Λpa r y3 ∈Q
1×m

y4Apa r =−Λpa r y4 ∈Q
1×m

y1, y2, y3, y4 ≥ 0

(ΛGS Λpa r )de + τ(v j )− τ(vi )≥ wi ∀ e = (vi , v j ) ∈ E

ΛGS = PΛ′
GS

Λ′
GS
∈Z1×n

ΛGS
~SGS ≥ o o = (1 . . . 1) ∈Z1×n

Affine scheduling with LPGS partitioning as allocation
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3.5.2.4 Mixed Integer Program for Hierarchically Partitioned Algorithms

As described already in Section 3.3.3, an algorithm which is co­partitioned is de­
composed into I ⊆ ILS ⊕ Ipa r ⊕ IGS . Where, the elements in ILS ⊂ Z

n denote the
iteration points within an LS tile. The elements in Ipa r ⊂ Z

n and IGS ⊂ Z
n are

the origins of the LS and GS tiles, respectively. A scheduling function for a node vi

according to the decomposition is given by

ti (ILS , Ipa r , IGS) = (ΛLS Λpa r ΛGS )







ILS

Ipa r

IGS






+ τ(vi )

The execution order of the locally sequential and the globally sequential tile are de­
fined by the loop matrices RLS and RGS . Respectively, a latency optimal solution for
affine scheduling taking co­partitioning into account can be obtained by solving the
following MIP.

Input:
• Reduced dependence graph G = (V , E , D)

• Execution time wi ∈W of each node vi ∈V , W : V →Z

• Iteration space I ⊆ ILS ⊕ Ipa r ⊕ IGS defined by

◦ ILS = {I ∈Z
n |ALS I ≥ bLS} where ALS ∈ Z

2n×n

◦ Ipa r = {I ∈ Z
n |Apa r I ≥ bpa r} where Apa r ∈Z

m×n

◦ IGS = {I ∈ Z
n |AGS I ≥ bGS} where AGS ∈ Z

2n×n

• Loop matrices RLS , RGS , and the corresponding path strides ~SLS and ~SGS

• Iteration interval P
Output:

• Schedule vector (ΛLS Λpa r ΛGS ) ∈ Z
1×3n

• Start times τ(vi ) of all nodes vi ∈V

Affine scheduling with co­partitioning as allocation
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Program:

min − (y1+ y2)bLS − (y3+ y4)bpa r − (y5+ y6)bGS

subject to y1ALS =ΛLS y1 ∈Q
1×2n

y2ALS =−ΛLS y2 ∈Q
1×2n

y3Apa r =Λpa r y3 ∈Q
1×m

y4Apa r =−Λpa r y4 ∈Q
1×m

y5AGS =ΛGS y5 ∈Q
1×2n

y6AGS =−ΛGS y6 ∈Q
1×2n

y1, y2, y3, y4, y5, y6 ≥ 0

(ΛLS Λpa r ΛGS )de + τ(v j )− τ(vi )≥ wi ∀ e = (vi , v j ) ∈ E

ΛLS = PΛ′
LS

Λ′
LS
∈Z1×n

ΛLS
~SLS ≥ o o = (1 . . . 1) ∈Z1×n

ΛGS
~SGS ≥ o

 

Since the proposed MIPs for LSGP and LPGS, as well as for co­partitioning are
very similar, the method can be easily extended to further hierarchically partitioning
schemes, such as proposed, for instance in [ML90,EM97a,EM99,Eck01,DHT06c].

Eckhart and Merker [EM97b] present a scheduling method for co­partitioned
array architectures. In contrast to our proposed approach, they can handle only
partitionings defined by a diagonal matrix (diag(ϑ1, . . . ,ϑn)), that means the tiles are
in form of an orthotope.

3.5.2.5 On the Number of Sequentialization Orders

One or more loop matrices are arguments of the afore presented MIPs, that is, the
sequentialization directions are given by the columns (loop vectors) of the loop ma­
trices. Thus, in order to derive an overall latency minimal solution for all possible
combinations of the loop vectors, a MIP has to be generated and solved. In Fig­
ure 3.10, all possible combinations for a 2­dimensional example are visualized.

Let us consider hierarchical partitioning with m levels, that means m loop ma­
trices describe the partitioning scheme and sequentialization, respectively. Let each
loop matrix be an n × n matrix, where n is the dimension of the iteration subspace
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Figure 3.10: For a 2­dimensional tile in shape of a parallelogram, all of its eight
different possible loop directions are visualized in (a)­(h).

(iteration space of the tile). Then the number k of loop matrix candidates can be
computed as follows.

k = m2n n!(3.32)

First let us consider the exponent 2nn!, where the 2n denotes, that each loop vector
might also be negated. The n! is the number of permutations of the n loop vec­
tors. Finally, when m loop matrices are given the number of combinations (2nn!) is
exponentiated with base m.

From the number­theoretic point of view, the growth of the function in Equa­
tion (3.32) is extraordinarily large. In practice, where tile dimensions from one to
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Table 3.1: Number k of loop matrix candidates for m matrices of dimension n.

no. m of matrices dimension n no. k of candidates

1 1 2
1 2 8
1 3 48
1 4 384
1 5 3 840
1 6 46 080
2 1 4
2 2 256
2 3 > 2.81 · 1014

2 4 > 3.94 · 10115

3 1 9
3 2 6 561
3 3 > 7.97 · 1022

4 1 16
4 2 65 536

four are typically and one­level partitioning is considered, the growth is manageable.
For two to four levels of partitioning, the use of the method is practicable up to a
dimension of n = 2, as Table 3.1 shows.

It should not go unnoticed, that the number of candidates can be further re­
duced and MIPs need not be generated for all k combinations. For instance, if the
considered algorithm has no data dependencies at all, the direction (negation of loop
vectors) is irrelevant. Hence, the number of candidates becomes k(n, m) = mn!. In
case, that an algorithm has data dependencies, the following theorem must hold in
order to have a legal partitioning [RS92].

Theorem 3.7 (Legal partitioning). Let an n­dimensional loop matrix R and the cor­

responding path strides ~S be given. In addition, l data dependencies D = (d1 . . . dl ) ∈
Zn×l have to be satisfied. Then, R and D define a legal partitioning if and only if

σadj(~S)D ≤ 0(3.33)

where σ = det(~S)/|det(~S)|.

Proof. We consider the cone [Sch86] generated by the path strides~si ∈
~S :

C =

(
n∑

i=1

θi~si | θi ∈R∧θi ≥ 0∧ 1≤ i ≤ n

)
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It can easily be seen that a data dependency di can be satisfied if and only if it lies
inside the cone C . Similar as in the proof of Theorem 3.4, the equivalent implicit
definition of the cone is given by

C =
n

x ∈Rn | σadj(~S)x ≥ 0
o

Since, by definition, the data dependence vectors are represented with opposite sign,
we finally get the condition in Equation (3.33).

Note that the condition in Theorem 3.7 is much more stringent than the conditions
proposed in [IT88, RS92] since it considers not only the tile shape but also the
scanning directions.

Consequently, Theorem 3.7 can be used as an early verification if a loop matrix is
legal and thus the generation of unnecessary19 MIPs may be avoided. This is especially
useful if internal resources (see Section 3.5.3) are also modeled within the MIP, which
could lead to a large number of variables and constraints.

3.5.3 Allocation of Resources within Processors

Until now, we have only considered a global allocation of iteration points to proces­
sors. This was realized by projecting or partitioning the iteration space. With regard
to the fact that the data dependencies of a given algorithm were considered, not only
the start times of the different iterations but also the relative start times τ(vi ) of each
node vi of the reduced dependence graph were determined. However, this method
assumes that enough resources, such as functional units, are available to enable the
derived schedule. Generally, this means that for one distinct time step an arbitrary
large number of resources must be available—of course this is not feasible in practice.
Hence, in the following, a number of resource constraints are presented that allow a
local allocation within the processors. The ideas of [HHL90,Thi95] (introduction of
binary variables within the MIP, cf. Section 3.1.2.3) are revamped in the next section.
In summary, these concepts allow:

• Module selection, that is, having regard to different binding possibilities,

• Consideration of a fixed amount of resources for each type (allocation),

• Functional pipelining, and

• Software pipelining of multi­dimensional data flow.

Moreover, we demonstrate how this local resource constraints can be combined with
the afore developed methods in Sections 3.5.1 and 3.5.2.

19Mixed integer programs with no solution.
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3.5.3.1 Resource Constraints

In order to take resource constraints within a processor into account, an additional
representation is introduced. For this purpose, integer variables that are required to
be 0 or 1 are used. These variables are referred to as binary variables or 0­1 variables.

Let a reduced dependence graph G = (V , E , D) (see Section 2.1.4) and a resource
graph GR = (VR, ER,W ,∆) with VR = V ∪VT (see Definition 3.1) be given, which
represent a nested loop program as well as the resource model of a considered target
architecture. Then, the scheduling of an operation vi ∈ V is characterized by a
binary variable xi ,k ,t , where xi ,k ,t = 1 denotes that at relative time instance t ∈ Z the
operation vi starts its operation on resource type rk ∈ VT , otherwise variable xi ,k ,t

equals 0. The relative start time τ(vi ) of each operation in G has a lower and an
upper bound. These bounds can be obtained from schedules by either following
the well known as soon as possible (ASAP) or as late as possible (ALAP) principles.
Through this, for each operation vi ∈ V an interval of possible starting times is
determined, τ(vi ) ∈

�
li , hi

�
, where li denotes the earliest and hi the latest possible

starting time, respectively. Some remarks on the approach: Within the processors,
unlimited resources are assumed. Also, since ASAP and ALAP are improper for
scheduling cyclic graphs, all edges e ∈ E , having nonzero data dependencies (de 6= 0),
are not examined for the determination of the bounds. This means that only local
dependencies at one distinct iteration are considered but no loop­carried ones. The
required input for the ALAP algorithm, the latency bound [Tei97], is set to the latest
time, derived by the ASAP algorithm, plus the duration of the considered iteration
interval P .

The binary variables xi ,k ,t ∈ {0,1} encode not only the start times of the nodes
but also may realize the selection from different binding possibilities, represented by
the resource graph GR. Thus, module selection and binding can be incorporated in
the MIP. As each operation can be executed on one resource type only, we need to
add the following binding constraint.

∑

∀k : (vi ,rk )∈ER

hi∑

t=li

xi ,k ,t = 1 ∀vi ∈V(3.34)

The first sum in the constraint in Equation (3.34) denotes that a node vi should be
executed every time on the same resource type, that is, its resource type binding is
static. The second sum makes sure that a node is started exactly once per iteration.

The relationship between the relative start times τ(vi ) and binary variables xi ,k ,t

is represented by the following weighted sum of the binary variables.

τ(vi ) =
∑

∀k : (vi ,rk )∈ER

hi∑

t=li

t xi ,k ,t ∀vi ∈V(3.35)
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Since by the concept of the resource graph an operation vi may have several binding
possibilities (cf. Figure 3.1 in Section 3.3), its execution time wi depends on the
selected resource. Hence, the evaluation time w(vi , rk), corresponding to a node
vi ∈V , executed on a resource type rk ∈VT , can be determined as follows.

wi =
∑

∀k : (vi ,rk )∈ER

hi∑

t=li

w(vi , rk) xi ,k ,t ∀vi ∈V(3.36)

Finally, it has to be ensured that at no time instance t the number of available re­
sources of one type is exceeded. By the inequality in Equation (3.37), it is guaran­
teed for all resource types rk that, at no time step, the number of operation being
executed, outruns the number α(rk) of available instances. The outer summation
considers all operations vi that are potentially executed on the same resource type
rk . The middle summation takes into account, how long a resource is occupied by
an operation. Here, the possible functional pipelining of functional units has to be
considered. As specified by the resource graph, to each resource type rk belongs a
pipeline rate δ(rk), which denotes how long the resource is occupied by an opera­
tion before the next one can be issued. Even though the execution time w(vi , rk)

of different vi ∈ V ′ =
¦

∀ j | (v j , rk) ∈ ER

©

on the same resource type rk might be
different, we assume that δ(rk) is constant and δ(rk) ≤ w(vi , rk) for all vi ∈ V ′.
From this, it follows that δ(rk) becomes w(vi , rk) if a functional unit supports no
pipelining. Thus, a resource is occupied for the interval

�
0,δ(rk)− 1

�
. That is,

it starts its execution at time xi ,k ,t but it also occupies the resource at time steps

xi ,k ,t−1, . . . , xi ,k ,t−(δ(rk)−1) =
∑δ(rk )−1

d=0
xi ,k ,t−d . Since the operations’ execution might

cross the bounds of the iteration interval P , possibly integral multiples thereof have
to be considered, νP . This is incorporated by the inner summation.

∑

∀i : (vi ,rk )∈ER

δ(rk )−1∑

d=0

∑

∀ν∈Z : li≤t−d−νP≤hi

xi ,k ,t−d−νP ≤ α(rk) ∀rk ∈VT(3.37)

∀t : 0≤ t ≤ P − 1

The constraint in Equation (3.37) can be formulated within a MIP only for a fixed
iteration interval P . From this the same question as discussed in Section 3.5.1.1
arises if the iteration interval is given as a constant or if it should be a variable of the
MIP. Whereas the first case is covered by the constraint in Equation (3.37), the latter
can be solved by limiting P to a fixed upper bound Pmax ∈ Z and the introduction
of further binary variables pl .

P =
Pmax∑

l=1

l pl pl ∈ {0,1}(3.38)
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Pmax∑

l=1

pl = 1(3.39)

Equation (3.39) ensures that exactly one fixed value is selected for P ∈ [1, Pmax] from
Equation (3.38). Hereby, Equation (3.37) can be rewritten as follows.

∑

∀i : (vi ,rk )∈ER

δ(rk )−1∑

d=0

∑

∀ν∈Z : li≤t−d−ν l≤hi

pl xi ,k ,t−d−ν l ≤ α(rk) ∀rk ∈VT(3.40)

∀l : 1≤ l ≤ Pmax

∀t : 0≤ t ≤ l − 1

The product of the two binary variables pl and xi ,k ,t−d−ν l is non­linear and thus does
not fit into a linear program. However, it can be linearized by introducing a new
binary variable γl ,i ,k ,t−d−ν l ∈ {0,1}, which depends on four indices.

γl ,i ,k ,s = pl xi ,k ,s where s = t − d − ν l

γl ,i ,k ,s ≤ pl(3.41)

γl ,i ,k ,s ≤ xi ,k ,s(3.42)

Using the inequalities in Equation (3.41) and Equation (3.42), the following table
illustrates that for γl ,i ,k ,s , the right values of the product pl xi ,k ,s are obtained.

pl xi ,k ,s γl ,i ,k ,s

0 0 0
0 1 0
1 0 0
1 1 {0,1}

Since γl ,i ,k ,s can be either zero or one, in the last row of the table, we can add −γl ,i ,k ,s

to the objective function of the MIP in order to force it to one. The new objective
function is defined as follows, where f denotes the original objective function.

min




 f −

∑

∀ possible γl ,i ,k ,s

γl ,i ,k ,s




(3.43)

The formulation of the resource constraints becomes:

∑

∀i : (vi ,rk )∈ER

δ(rk )−1∑

d=0

∑

∀ν∈Z : li≤s≤hi

γl ,i ,k ,s ≤ α(rk) ∀rk ∈VT(3.44)

∀l : 1≤ l ≤ Pmax

∀t : 0≤ t < l
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Additionally, the following binding constraint has to be satisfied.

∑

∀k : (vi ,vk )∈ER

hi∑

s=li

Pmax∑

l=1

γl ,i ,k ,s = 1 ∀vi ∈V(3.45)

From the binding constraint in Equation (3.45) it follows that the summation over
all possible variables γl ,i ,k ,s equals |V | and thus is constant. Therefore, the modifica­
tion of the objective function, as proposed in Equation (3.43), does not matter and
can be neglected.

Without further modifications, the afore formulated constraints can be easily
added directly to the MIPs presented in Section 3.5.1 and Section 3.5.2. However,
it should be noticed that because of the discretization (introduction of binary vari­
ables), the start times of the nodes are enforced to be integral.

In a nutshell, the mixed integer programs have to be augmented by the following
constraints.

Additional input:
• Resource graph GR = (VR, ER,W ,∆), where VR =V ∪VT

• Allocation α(rk) for all rk ∈VT

Additional output:

• Bindings of nodes vi ∈V to resource types rk ∈VT

Additional constraints:

∑

∀k : (vi ,rk )∈ER

hi∑

t=li

xi ,k ,t = 1 ∀vi ∈V

∑

∀k : (vi ,rk )∈ER

hi∑

t=li

t xi ,k ,t = τ(vi ) ∀vi ∈V

∑

∀k : (vi ,rk )∈ER

hi∑

t=li

w(vi , rk) xi ,k ,t = wi ∀vi ∈V

∑

∀i : (vi ,rk )∈ER

δ(rk )−1
∑

d=0

∑

∀ν∈Z : li≤t−d−νP≤hi

xi ,k ,t−d−νP ≤ α(rk) ∀rk ∈VT

∀t : 0≤ t ≤ P − 1

where xi ,k ,t ∈ {0,1}.

Local allocation constraints if iteration interval is given
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If the iteration interval P should be a variable of the MIP, the mixed integer program
with projection as allocation in Section 3.5.1 can be augmented by the following
constraints.

Additional input:
• Resource graph GR = (VR, ER,W ,∆), where VR =V ∪VT

• Allocation α(rk) for all rk ∈VT

Additional output:

• Bindings of nodes vi ∈V to resource types rk ∈VT

Additional constraints:

∑

∀k : (vi ,rk )∈ER

hi∑

t=li

xi ,k ,t = 1 ∀vi ∈V

∑

∀k : (vi ,vk )∈ER

hi∑

s=li

Pmax∑

l=1

γl ,i ,k ,s = 1 ∀vi ∈V

∑

∀k : (vi ,rk )∈ER

hi∑

t=li

t xi ,k ,t = τ(vi ) ∀vi ∈V

∑

∀k : (vi ,rk )∈ER

hi∑

t=li

w(vi , rk) xi ,k ,t = wi ∀vi ∈V

∑

∀i : (vi ,rk )∈ER

δ(rk )−1
∑

d=0

∑

∀ν∈Z : li≤s≤hi

γl ,i ,k ,s ≤ α(rk ) ∀rk ∈VT

∀l : 1≤ l ≤ Pmax

∀t : 0≤ t < l

γl ,i ,k ,s ≤ pl ∀ possible γl ,i ,k ,s

γl ,i ,k ,s ≤ xi ,k ,s ∀ possible γl ,i ,k ,s

where xi ,k ,t ,γl ,i ,k ,s ∈ {0,1} and s = t − d − ν l .

Local allocation constraints if iteration interval is a variable

3.5.3.2 Remarks

It should be noted, that if the iteration interval is considered as a variable of the
MIP, the number of variables in the MIP grows by a factor of P . Thus, the entire
program can become relatively large and might not be solvable anymore. Therefore,
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in practice, a bisection method that successively generates and solves several MIPs
for different fixed values of P is better applicable.

Programs and reduced dependence graphs with run­time dependent conditions
can be handled by the same mixed integer programs since conditions can be modeled
by comparators and the merging of the program path can be considered as multi­
plexers in the resource model. However, this approach may have unnecessarily high
computation cost since both branches have to be evaluated—possibly in sequential
order—before the right result is selected. Anyhow, in some VLIW processor architec­
tures and especially in EPIC [SR00], this so­called predicated execution [MHB+94]
is the agent of choice in order to decrease the occurrence of branches and to in­
crease the exploitation of instruction level parallelism. The removal of branches by
if­conversion [AKPW83] is beneficial, especially, when considering deeply pipelined
architectures such as in modern microprocessors. For instance, branches might cause
an overhead of 18 to 19 clock cycles [BWSF06, IBM07] at the co­processors (called
synergistic processing elements) of the Cell Broadband Engine Architecture [KDH+05].
In turn, the evaluation of a condition can be realized within one clock cycle in high­
level synthesis. Thus, in the next section, the mutual exclusivity of different execu­
tion paths is studied with respect to resource constraints.

3.6 Conditional Scheduling

As mentioned earlier, if an algorithm has run­time dependent conditions (DPRA),
it can be scheduled by the techniques introduced in Section 3.5.3. However, the
scheduling of all possible execution paths may unnecessarily increase the length of
the schedule as well as energy cost since some equations may have to be evaluated,
which do not affect the data flow at all. This motivates to develop new resource
constraints, which take advantage of mutually exclusive cases such as iteration and
run­time dependent conditions.

As introduction, some simple examples are discussed. At first, a fragment in
PAULA notation of an algorithm with iteration dependent conditions is considered
(Example 3.3).

Example 3.3.

S1: c[i,j] = 0 if (i==0 and j==0);

S2: c[i,j] = a[i-1,j] * 3 if (i>=1 and j==0);

S3: c[i,j] = a[i,j-1] * 5 if (j>=1);

S4: d[i,j] = c[i,j] + b[i,j];

Assume that iteration dependent conditions can be evaluated in parallel to the data
flow, with zero overhead. Without information about a global allocation (space map­
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3 a 5 0

S2 : c ∗ S3 : c ∗ S1 : c b

S4 : d +

�−1
0

� � 0
−1

�

Figure 3.11: Reduced dependence graph (representation simplified) of Example 3.3.
Corresponding to the extended RDG Definition 2.7, a separate node is spend for
each variable c .

ping), it is not known whether these conditions can be resolved spatially or tempo­
rally.

According to Definition 2.7, the reduced dependence graph of the code fragment
in Example 3.3 is depicted in Figure 3.11.
Regarding the resource constraints formulated in Section 3.5.3.1, both nodes20 v2

and v3 have to be scheduled. Hence, either two multipliers are necessary or the two
nodes have to be scheduled one after the other, even though the statements S2 and
S3 are mutually exclusive, see for illustration Figure 3.12.

0 1 t

MUL1 S2

MUL2 S3

ADD S4

0 1 2 t

MUL S2 S3

ADD S4

Figure 3.12: Possible Gantt charts, representing the execution order of the RDG
shown in Figure 3.11, in the case of two available multipliers (left) and one (right),
respectively.

It is possible to argue that this unfavorable behavior is due to the definition of the
RDG because other definitions (cf. Definition 2.6 or for instance [TTZ97]) define
only one node per variable name, which would lead to the RDG shown in Fig­
ure 3.13 on the left.

20Note that we use statement Si and node vi synonymously.
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3 a 5 0

c b

d

�−1
0

�� 0
−1

�

0 1 t

MUL c

ADD d

Figure 3.13: Reduced dependence graph of the code fragment of Example 3.3. Ac­
cording to Definition 2.6 of an RDG, only one node represents variable c .

With this graph, the problem does not exist since only one node "c" has to be sched­
uled as shown in Figure 3.13 on the right. This argument holds as long as several
statements, that are combined to one RDG node, can be bound to the same resource
type, which is not the case in the next example.

Example 3.4.

S1: c[i] = a[i] * b[i] if (i==0);

S2: c[i] = a[i] + b[i] if (i>=1);

S3: d[i] = b[i] + 4 if (i==0);

S4: d[i] = a[i] * 5 if (i>=1);

For Example 3.4, the reduced dependence graph and a possible resource­constrained
schedule are visualized in Figure 3.14.

a b5 4

S1 : c ∗ S2 : c + S3 : d +S4 : d ∗ 0 1 t

MUL S1 S4

ADD S2 S3

Figure 3.14: On the left, RDG of the code fragment of Example 3.4. On the right,
possible schedule in case of one available adder and multiplier.
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0 1 2 3 4 t

MUL S1 S4 S1 S4 S1

ADD S2 S3 S2 S3 S2

P
0 1 2 3 4 t

MUL S1|S4 S1|S4 S1|S4 S1|S4 S1|S4

ADD S2|S3 S2|S3 S2|S3 S2|S3 S2|S3

P

Figure 3.15: Different periodic schedules of the code fragment specified in Exam­
ple 3.4 are shown. On the left, all statements are evaluated, leading to an iteration
interval of two. That is, in every second cycle a new iteration can be started, which is
denoted by a different color in the Gantt chart. On the right, the mutual exclusivity
is incorporated, leading to a doubled throughput (P = 1).

If mutual exclusivity is considered in Example 3.4, the throughput can be doubled
at the same number of resources. In the following, a "|" in the bars of the Gantt
charts denotes that only one statement/node of a given set is executed in the interval.
The iterative execution of the above example, in case of parallel and conditional
execution, is shown in Figure 3.15. Diverse colors denote that operations belong to
different iterations.

The throughput associated with a schedule can be even worse if more than two
disjoint execution paths exist, which is not unusual, for instance, if an algorithm has
been partitioned.

Some remarks on run­time dependent conditions are given in the following Sobel
edge detection algorithm.

Example 3.5 (Sobel edge detection algorithm).
par (x>=0 and x<=N-1 and y>=0 and y<=M-1)

{

S1: p[x,y] = pi[x,y];

S2: q[x,y] = 2 * p[x-1,y-1] if (x>=1 and y>=1);

S3: h1[x,y] = p[x-1,y-2] - p[x-1,y] if (x>=1 and y>=2);

S4: h2[x,y] = h1[x,y] + q[x,y] if (x>=1 and y>=2);

S5: v1[x,y] = p[x-2,y-1] + p[x,y-1] if (x>=2 and y>=1);

S6: v2[x,y] = v1[x,y] + q[x,y] if (x>=2 and y>=1);

S7: h3[x,y] = h2[x-2,y-1] - h2[x,y-1] if (x>=3 and y>=3);

S8: h4[x,y] = ifrt(h3[x,y]<0, -h3[x,y], h3[x,y]) if (x>=3 and y>=3);

S9: v3[x,y] = v2[x-1,y-2] - v2[x-1,y] if (x>=3 and y>=3);

S10: v4[x,y] = ifrt(v3[x,y]<0, -v3[x,y], v3[x,y]) if (x>=3 and y>=3);

S11: s[x,y] = h4[x,y] + v4[x,y] if (x>=3 and y>=3);

S12: po[x,y] = ifrt(s[x,y]>255, 255, s[x,y]) if (x>=3 and y>=3);

}
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Two out of the three run­time dependent conditions in the algorithm (Example 3.5)
are used for the calculation of absolute values, whereas the third is used for a thresh­
old function. Once again, the semantics, for instance, of statement S8 is equivalent
to the following pseudo code fragment.

if (h3[x,y]<0) then

h4[x,y] = -h3[x,y];

else

h4[x,y] = h3[x,y];

endif

These simple cases can be implemented by dedicated functions, as, for instance,
statement S8 could be replaced by the following

S8: h4[x,y] = abs(h3[x,y]) if (x>=3 and y>=3);

which might be true in case of high­level synthesis at the cost of defining new basic
functions. But in case of generating assembly code for a programmable architecture,
only the available instructions can be used. The situation becomes even more inter­
esting if a run­time dependent condition is used that has influence on more than one
statement as in the following program [HT04c], which is introduced as pseudo code
at first.

Example 3.6 (Nested run­time dependent conditions). The following pseudo code is
used to illustrate the nesting of run­time dependent conditions. Similar to the PAULA
notation, the order of statements does not matter and the FORALL keyword denotes a
parallel loop construct.

FORALL (i = 1; i ≤N ; i ++)
FORALL ( j = 1; j ≤M ; j ++)

b [i , j ] = b [i , j − 1]− c[i − 1, j ];

a[i , j ] = a[i − 1, j ]+ b [i , j ];

IF (a[i , j ] > 10)
c[i , j ] = b [i , j ] ∗ b [i , j ];

IF (b [i , j ] > 8)
d[i , j ] = b [i , j ]+ a[i , j ];

e[i , j ] = a[i , j ]+ 10;

ELSE
d[i , j ] = 2 ∗ b [i , j ];

e[i , j ] = a[i , j ]+ 3;

ENDIF
ELSE

c[i , j ] = a[i , j ]+ 8;
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d[i , j ] = b [i , j ]+ 3;

e[i , j ] = 2 ∗ a[i , j ];

ENDIF
ENDFOR

ENDFOR

The corresponding program in PAULA notation is defined as follows.

par (i>=1 and i<=N and j>=1 and j<=M)

{S1: a[i,j] = a[i-1,j] + b[i,j];

S2: b[i,j] = b[i,j-1] - c[i-1,j];

S3: c[i,j] = ifrt(C1[i,j], c1[i,j], c0[i,j]);

S4: c1[i,j] = b[i,j] * b[i,j];

S5: c0[i,j] = a[i,j] + 8;

S6: d[i,j] = ifrt(C1[i,j], d1[i,j], d0[i,j]);

S7: d1[i,j] = ifrt(C2[i,j], d11[i,j], d10[i,j]);

S8: d0[i,j] = b[i,j] + 3;

S9: d11[i,j] = b[i,j] + a[i,j];

S10: d10[i,j] = 2 * b[i,j];

S11: e[i,j] = ifrt(C1[i,j], e1[i,j], e0[i,j]);

S12: e1[i,j] = ifrt(C2[i,j], e11[i,j], e10[i,j]);

S13: e0[i,j] = 2 * a[i,j];

S14: e11[i,j] = a[i,j] + 10;

S15: e10[i,j] = a[i,j] + 3;

S16: C1[i,j] = a[i,j] > 10;

S17: Ch[i,j] = b[i,j] > 8;

S18: C2[i,j] = ifrt(C1[i,j], Ch[i,j], false);

}

In Example 3.6, run­time dependent condition C1 is used in four statements (S3,
S6, S11, and S18) and condition C2 in two statements (S7 and S12). If a projection in
direction (1 0)T is used as global allocation, the schedules in Figure 3.16 and Fig­
ure 3.17 depict the case that all statements are considered and scheduled (P = 6)
and the case of conditional execution (P = 4), respectively. In this example, the
throughput is increased by 33 % when exploiting the conditional execution in com­
parison to the version without conditional execution. The simple examples for both,
iteration dependent and run­time dependent conditions, demonstrate the benefits
of a conditional execution. The question to be answered now is, whether and how
the conditional behavior can be integrated into the resource constraints of the afore
introduced MIPs. For this, the concept of so­called AND­XOR­trees is introduced.
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0 1 2 3 4 5 6 7 t

SUB S2 S2

MUL S10 S13 S4 S10

CMP S17 S16 S17

ADD S14 S1 S8 S5 S9 S15 S14 S1

P

Figure 3.16: Gantt chart for Example 3.6 when all statements have to be scheduled.

0 1 2 3 4 5 6 7 t

SUB S2 S2

MUL S10 S4|S13 S10 S4|S13

CMP S16 S17 S16 S17

ADD S8|S14 S1 S9|S15 S5 S8|S14 S1 S9|S15 S5

P

Figure 3.17: Gantt chart for Example 3.6 when conditional execution is considered.

3.6.1 AND­XOR­Tree

If the number of available resources (functional units) within a processor is limited,
several operations may compete for the same resource. It has to be prevented that
more than α(rk) operations are being simultaneously executed by the same resource
type rk ∈VT . Here, we have to distinguish between two different cases:

1. Concurrent operations/statements, we also say the statements are in AND­
relation.

2. If there are different execution branches in an algorithm, such as iteration or
run­time dependent conditions, the statements are mutually exclusive, we say
in XOR­relation.

The relationships among a set of statements can be represented as a tree [HHL90].

Definition 3.11 (AND­XOR­tree). An AND­XOR­tree X = (V x , E x ) or shortened
AXT represents the relationship among a set of statements, where the internal nodes v x

i
∈

V x are of the introduced types, XOR (⊕) and AND (⊙), and the leaves v x
i

correspond to
statements Si and left­hand side variables vi of the statement, respectively. The root of the
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⊙

S1 S2 S3 S6
⊕C1

⊙1

S4 S7 S12 S17
⊕C2

⊙1

S9 S14

⊙0

S10 S15

⊙0

S5 S8 S13

S11 S16 S18

Figure 3.18: AND­XOR­tree for the PAULA program in Example 3.6.

tree is represented by
⊙

. The affiliation of a node to an XOR or AND node is denoted
by a directed edge e x ∈ E x .

The AXT of the previous program is shown in Figure 3.18. The subscripts of the
XOR nodes denote the corresponding condition Ci . The subscripts of the AND
nodes are either 1, denoting the "if"­branch of the condition, or 0, denoting the
"else"­branch of the condition. The nesting of the two conditions C1 and C2 is
represented by the different levels of the tree. Iteration dependent conditions cannot
be nested since each statement is assigned to exactly one iteration space. A program
fragment which contains both types of conditions is given in Example 3.7.

Example 3.7.

S0: b[i] = a[i] * 2 if (i==1);

S1: C1[i] = a[i] > 10 if (i==1);

S2: c[i] = ifrt(C1[i], c0[i], c1[i]) if (i==1);

S3: c0[i] = a[i] * 3 if (i==1);

S4: c1[i] = a[i] * 4 if (i==1);

S5: b[i] = a[i] * 5 if (i>1);

The AXT according to Example 3.7 is depicted in Figure 3.19, where the decom­
position of the iteration space I is denoted by ⊕

I
and the corresponding mutual

exclusive cases are expressed by the subscripts of the child nodes (AND nodes).
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⊙

⊕
I

⊙i=1

S0 S1 S2
⊕C1

⊙1

S3

⊙0

S4

⊙i>1

S5

Figure 3.19: AND­XOR­tree with both, run­time and iteration dependent condi­
tions.

Since the number of mutually exclusive iteration subspaces of a given iteration
space can be arbitrary, two possibilities of how to decompose the iteration space are
given. Consider, for instance, the following example.

Example 3.8.

S0: b[i,j] = a[i,j] * 2 if (i==1 and j==1);

S1: b[i,j] = a[i,j] * 5 if (i>1 and j==1);

S2: b[i,j] = a[i,j] * 3 if (j>1);

S3: c[i,j] = a[i,j] * 4;

S4: d[i,j] = a[i,j] * 7 if (j>1);

S5: e[i,j] = a[i,j] * 8 if (i==1);

S6: e[i,j] = a[i,j] * 9 if (i>1);

As a first variant, we consider a decomposition into disjoint iteration spaces per
variable as shown in Figure 3.20.
Afterwards (see Figure 3.21), the statements with equal iteration dependent condi­
tions can be clustered; here, statements S2 and S4.
In the second variant, a decomposition of the entire iteration space into disjoint sub­
spaces is performed and the individual statements are assigned to these subspaces. If
a variable is present in all subspaces, it has no iteration dependent condition and can
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⊙

⊕
I

⊙i=1∧ j=1

S0

⊙i>1∧ j=1

S1

⊙ j>1

S2

S3 ⊕
I

⊙ j>1

S4

⊕
I

⊙i=1

S5

⊙i>1

S6

Figure 3.20: AND­XOR­tree of Example 3.8, first decomposition variant (after de­
composition into disjoint iteration spaces per variable).

⊙

⊕
I

⊙i=1∧ j=1

S0

⊙i>1∧ j=1

S1

⊙ j>1

S2 S4

S3 ⊕
I

⊙i=1

S5

⊙i>1

S6

Figure 3.21: AXT of Example 3.8, first decomposition variant (after clustering).

therefore be connected directly to the root node. The decomposition of Example 3.8
leads to four disjoint subspaces.

{i = 1∧ j = 1} {i > 1∧ j = 1} {i = 1∧ j > 1} {i > 1∧ j > 1}

An allocation of statements to the four spaces results in the AND­XOR­tree depicted
in Figure 3.22.
Whether the first or second variant should be preferred, has to be studied from case
to case, depending on the complexity and control requirements.

The concept of relationship trees allows us to formulate conditional resource
constraints in the next section.
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⊙

⊕
I

⊙i=1∧ j=1

S0 S5

⊙i>1∧ j=1

S1 S6

⊙i=1∧ j>1

S2 S4 S5

⊙i>1∧ j>1

S2 S4 S6

S3

Figure 3.22: AND­XOR­tree of Example 3.8, second decomposition variant.

3.6.2 Resource Constraints for Conditional Execution

Let the relationship between the nodes of a given RDG be expressed by a corre­
sponding AXT X = (V x , E x ) as defined in Section 3.6.1. Further, let function fi

be associated to each node v x
i
∈V x . Since resource constraints (cf. Section 3.5.3.1)

depend on the resource type rk and the time step t , we write fi (rk , t ). The function
fi (rk , t ) denotes the number of occupied instances of resource type rk at time step t .
The resource constraints can be formulated as follows.

f⊙(rk , t )≤ α(rk) ∀rk ∈VT(3.46)

∀t : 0≤ t ≤ P − 1

Here, f⊙ denotes the function fi of the root node (i =
⊙

). Function fi is recursively
defined as follows.

fi (rk , t ) =









∑

j∈
n

j | (vx
i

,vx
j
)∈E x

o

f j (rk , t ) if node v x
i

is root node

∑

t ′∈T al l
i
(rk ,t )

max
j∈
n

j | (vx
i

,vx
j
)∈E x

o
f ′

j
(rk , t , t ′) if node v x

i
is XOR node

δ(rk )−1∑

d=0

∑

∀ν:li≤t−d−νP≤hi

xi ,k ,t−d−νP if node v x
i

is leaf : (vi , rk) ∈ ER

0 if node v x
i

is leaf : (vi , rk) /∈ ER

(3.47)

116



Conditional Scheduling

with

f ′
i
(rk , t , t ′) =









∑

j∈
n

j | (vx
i

,vx
j
)∈E x

o

f ′
j
(rk , t , t ′) if node v x

i
is AND node

max
j∈
n

j | (vx
i

,vx
j
)∈E x

o
f ′

j
(rk , t , t ′) if node v x

i
is XOR node

xi ,k ,t ′
if node v x

i
is leaf : (vi , rk) ∈ ER

∧ t ′ ∈ Ti(rk , t )

0
if node v x

i
is leaf : (vi , rk) /∈ ER

∨ t ′ /∈ Ti(rk , t )

(3.48)

The sets T al l
i

, depending on rk and t , are recursively derived as follows.

T al l
i
(rk , t ) =









⋃

j∈
n

j | (vx
i

,vx
j
)∈E x

o

T al l
j
(rk , t ) if node v x

i
is AND or XOR node

Ti (rk , t ) if node v x
i

is leaf : (vi , rk) ∈ ER

; if node v x
i

is leaf : (vi , rk) /∈ ER

(3.49)

Finally, the sets Ti (rk , t ) are defined as follows.

Ti(rk , t ) =
�

t ′ | li ≤ t ′ ≤ hi ∧ t ′ = t − d − νP ∧ 0≤ d ≤ δ(rk)− 1
	

(3.50)

In Equations (3.47) and (3.48), the maximum functions reflect the mutual exclusiv­
ity of different branches. For instance, if two binary variables xi ,k ,t and x j ,k ,t belong
to nodes vi and v j , respectively, that are mutually exclusive, the values of both bi­
nary variables can be one since max(xi ,k ,t , x j ,k ,t ) will be at most one and thus only
one resource rk is occupied at time t .

In the following, the specific constraints are explained in detail. The first case of
Equation (3.47) is considered when the given node is the root node—this is only the
case when the function is called in Equation (3.46). It sums up all its direct child
nodes, that is, all its child nodes are in AND­relation. The second case of Equa­
tion (3.47) is considered if the nodes are in exclusive disjunction. Here, it is not only
sufficient to consider the node at time step t but also at all time steps t ′ ∈ T al l

i
at

which operations possibly compete for the same resource. This is important if the
latency of a branch is longer than the iteration interval. That is, the set T al l

i
(rk , t )

represents all possible start times of competing operations within the same subtree
rooted at node v x

i
∈V x . The third case of Equation (3.47) is the same as in the nor­

mal resource constraint (see Equation (3.37)), when the nodes are in AND­relation.
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The last case of Equation (3.47) returns zero if the corresponding node vi has no
binding possibility on resource type rk .

The different cases of Equation (3.48) are similar to that of Equation (3.47),
except that the possible time steps t ′ are explicitly given by the calling functions.
Thus, in the third case of the constraint, it has to be verified if the given t ′ belongs
to the set of possible start times Ti (rk , t ) of node vi .

The resource constraint is illustrated by the following example.

Example 3.9.

par (i>=1 and i<=N)

{ S0: C1[i] = x[i] > 7;

S1: a[i] = ifrt(C1[i], a1[i], a0[i]);

A: a1[i] = x[i] + 3;

B: a0[i] = x[i] * 3;

S2: b[i] = ifrt(C1[i], b1[i], b0[i]);

C: b1[i] = a[i] * 4;

D: b0[i] = a[i] + 4;

}

In Example 3.9, it is assumed that the resource model contains one multiplier, one
adder, and one comparator, which all complete their operations within one clock­
cycle. The corresponding AND­XOR­tree is depicted in Figure 3.23 and the associ­
ated reduced dependence graph is shown in Figure 3.24.

⊙

S0 S1 S2
⊕C1

⊙1

A C

⊙0

B D

Figure 3.23: AND­XOR­tree of the program in Example 3.9.

Since only one addition and one multiplication are performed per iteration, one
might guess that an iteration interval of P = 1 is possible.
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7 x 3 3

S0 : C1 > A : a1 + B : a0 ∗

4 S1 : a 4

C : b1 ∗ D : b0 +

S2 : b

Figure 3.24: Reduced dependence graph of the program in Example 3.9.

P = 1 rk = ADD lA= hA= 0 lD = hD = 1

t = 0 : f⊙(ADD, 0) =
∑

t ′∈T al l
⊕C1
(ADD,0)

max( f ′
⊙1
(ADD, 0, t ′), f ′

⊙0
(ADD, 0, t ′))

T al l
⊕C1

(ADD, 0) = {0,1}

⇒ f⊙(ADD, 0) =max(xA,ADD,0)+max(xD,ADD,1) = xA,ADD,0+ xD,ADD,1

The resource constraint f⊙(ADD, 0) ≤ α(ADD) = 1 cannot be satisfied since the
statements A and D have no more mobility, that is, A has to be started at time step
0 and D at time step 1. An iteration interval of P = 2 leads to more flexibility in
starting the operations (mobility).

P = 2 rk = ADD lA= 0 hA= 1 lD = 1 hD = 2
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0 1 2 3 t

MUL C B C B

CMP S0 S0

ADD D A D A

P

Figure 3.25: Schedule for Example 3.9 with the minimal iteration interval of P = 2.

t = 0 : f⊙(ADD, 0) =
∑

t ′∈T al l
⊕C1
(ADD,0)

max( f ′
⊙1
(ADD, 0, t ′), f ′

⊙0
(ADD, 0, t ′))

T al l
⊕C1

(ADD, 0) = {0,2}

⇒ f⊙(ADD, 0) =max(xA,ADD,0)+max(xD,ADD,2) = xA,ADD,0+ xD,ADD,2

t = 1 : f⊙(ADD, 1) =
∑

t ′∈T al l
⊕C1
(ADD,1)

max( f ′
⊙1
(ADD, 1, t ′), f ′

⊙0
(ADD, 1, t ′))

T al l
⊕C1

(ADD, 1) = {1}

⇒ f⊙(ADD, 1) =max(xA,ADD,1)+max(xD,ADD,1) = xA,ADD,1+ xD,ADD,1

A solution that satisfies both constraints f⊙(ADD, 0) ≤ 1 and f⊙(ADD, 1) ≤ 1 is
given by the schedule shown in Figure 3.25. The merge nodes (statements S1 and S2)
are not shown since it is assumed that they are implemented as a multiplexer and,
hence, do not require extra execution time units.

The proposed resource constraints for conditional execution can be integrated
into the previously presented MIPs fairly easily. The only question is, how the
maximum functions in Equations (3.47) and (3.48) should be formulated. Here,
several possibilities exist, which are briefly described in the following (we refer to
Appendix A.2 for a more detailed description).

Let a1,a2, . . . ,an be variables of a mixed integer program. Then, the maximum
b =max (a1,a2, . . . ,an) can be determined as follows.

1. By adding n inequalities b ≥ ai , i = 1 . . .n as constraints to the MIP and by
adding b to the objective function, f (x)+ b .

2. By adding constraints that contain binary variables and big­M constants (see
Appendix A.2).

In summary, the MIPs have to be augmented by the following constraints in order
to handle resource constraints for the conditional execution of statements.
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Additional input:
• Resource graph GR = (VR, ER,W ,∆), where VR =V ∪VT

• AND­XOR­tree X = (V x , E x )

• Allocation α(rk) for all rk ∈VT

Additional output:

• Bindings of nodes vi ∈V to resource types rk ∈VT

Additional constraints:

f⊙(rk , t )≤ α(rk) ∀rk ∈VT

∀t : 0≤ t ≤ P − 1

starting with i =
⊙

and

fi (rk , t ) =









∑

j∈
n

j | (vx
i

,vx
j
)∈E x

o

f j (rk , t ) if node v x
i

is root node

∑

t ′∈T al l
i
(rk ,t )

max
j∈
n

j | (vx
i

,vx
j
)∈E x

o
f ′

j
(rk , t , t ′) if node v x

i
is XOR node

δ(rk )−1
∑

d=0

∑

∀ν:li≤t−d−νP≤hi

xi ,k ,t−d−νP if node v x
i

is leaf : (vi , rk) ∈ ER

0 if node v x
i

is leaf : (vi , rk) /∈ ER

f ′
i
(rk , t , t ′) =









∑

j∈
n

j | (vx
i

,vx
j
)∈E x

o

f ′
j
(rk , t , t ′) if node v x

i
is AND node

max
j∈
n

j | (vx
i

,vx
j
)∈E x

o f ′
j
(rk , t , t ′) if node v x

i
is XOR node

xi ,k ,t ′
if node v x

i
is leaf : (vi , rk ) ∈ ER

∧ t ′ ∈ Ti (rk , t )

0
if node v x

i
is leaf : (vi , rk ) /∈ ER

∨ t ′ /∈ Ti (rk , t )

T al l
i
(rk , t ) =









⋃

j∈
n

j | (vx
i

,vx
j
)∈E x

o

T al l
j
(rk , t ) if node v x

i
is AND or XOR node

Ti (rk , t ) if node v x
i

is leaf : (vi , rk) ∈ ER

; if node v x
i

is leaf : (vi , rk) /∈ ER

Ti (rk , t ) =
�

t ′ | li ≤ t ′ ≤ hi ∧ t ′ = t − d − νP ∧ 0≤ d ≤ δ(rk)− 1
	

where xi ,k ,t ∈ {0,1}.

Local allocation constraints for conditional execution
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3.7 Lifetime of Variables

In order to compute the number of necessary memory or to incorporate further
resource constraints into the MIPs, the lifetime of a variable is of interest.

Definition 3.12 (Lifetime). The lifetime interval of a variable v is the time interval
beginning at the definition (production) of the variable and ending at the time where no
more operations use (consume) the variable. The lifetime interval is denoted by ̺(v) =
[ρa(v),ρb (v)]. The duration, defined by ρ(v) = ρb (v)−ρa(v) is called lifetime.

vi

v j1
v j2

v jm

e1

e3e2

en

Figure 3.26: Illustration for the lifetime of a variable vi .

The lifetime of a variable, or rather the lifetime of its corresponding node vi ∈V of
the reduced dependence graph G = (V , E) is illustrated in Figure 3.26. The node vi

has a set F (vi ) of outgoing edges, which is defined by F (vi ) = {e ∈ E | e = (vi , vk) ∈
E}. Let n be the number of edges in this set F (vi ) and the edges themselves be
enumerated from e1, e2 to en. Then, the dependencies can be expressed by the set of
the following equations.

xi[I ] = . . .

x j1
[I ] =F j1

(. . . , xi[I + de1
], . . .)

x j2
[I ] =F j2

(. . . , xi[I + de2
], xi[I + de3

], . . .)

...

x jm
[I ] =F jm

(. . . , xi[I + den
], . . .)

It follows, that the beginning ρa and the end ρb of the lifetime interval of node vi

are given by:

ρa(vi ) = ti (I )+wi =ΛI +λ+ τ(vi )+wi

ρb (vi ) = max
∀v j∈V : e=(vi ,v j )∈F (vi )

�

t j (I + de)
�

= max
∀v j∈V : e=(vi ,v j )∈F (vi )

�

Λ(I + de)+λ+ τ(v j )
�
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Consequently, the lifetime interval ̺(vi ) and the lifetime ρ(vi ) of node vi are given
by:

̺(vi ) = [ρa(vi ),ρb (vi )]

=

�

ΛI +λ+ τ(vi )+wi , max
∀v j∈V : e=(vi ,v j )∈F (vi )

�

Λ(I + de)+λ+ τ(v j )
�
�

ρ(vi ) = ρb (vi )−ρa(vi )

= max
∀v j∈V : e=(vi ,v j )∈F (vi )

�

Λ(I + de)+λ+ τ(v j )
�

−
�

ΛI +λ+ τ(vi )+wi

�

= max
∀v j∈V : e=(vi ,v j )∈F (vi )

�

Λde + τ(v j )− τ(vi )−wi

�

Let e ∈ E be an edge of the given reduced dependence graph G = (V , E) and de be
the associated data dependence vector. Hence, in dependence on the space­mapping
Φ and the value of de , three different types of edges and lifetimes can be identified.
The set of outgoing edges F (vi ) of a node vi can be decomposed into three disjoint
sets, F (vi ) = F◦(vi )∪ F⊳(vi )∪ F⊲(vi ). That is, edge e can be classified to exactly one
of the three sets F◦(vi ), F⊳(vi ), and F⊲(vi ) as follows.

Type 1
If the data dependency vector de satisfies Φde = 0 ∧ de = 0, e belongs to set
F◦(vi ). From the hardware perspective, the set F◦(vi ) represents local memory
within a processor to store intermediate results within one iteration period.
The corresponding lifetime ρ◦ of the node vi is defined as follows.

ρ◦(vi ) = max
∀v j∈V : e=(vi ,v j )∈F◦(vi )

�

τ(v j )− τ(vi )−wi

�

(3.51)

Type 2
If the data dependency vector de satisfies Φde = 0 ∧ de 6= 0, e belongs to set
F⊳(vi ). Set F⊳(vi ) also denotes the internal storage within a processor but since
de 6= 0, the corresponding data need to be stored for more than one iteration.
The corresponding lifetime ρ⊳ of the node vi is defined as follows.

ρ⊳(vi ) = max
∀v j∈V : e=(vi ,v j )∈F⊳(vi )

�

Λde + τ(v j )− τ(vi )−wi

�

(3.52)

Type 3
If the data dependency vector de satisfies Φde 6= 0, e belongs to set F⊲(vi ). From
the hardware perspective, this set denotes delay memory between different pro­
cessors. The corresponding lifetime ρ⊲ of the node vi is defined as follows.

ρ⊲(vi ) = max
∀v j∈V : e=(vi ,v j )∈F⊲(vi )

�

Λde + τ(v j )− τ(vi )−wi

�

(3.53)
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Since we consider iterative algorithms with a period of P , the amount of memory
m(vi ) needed to store all life instances of a variable vi is proportional to the lifetime
of the variable.

m(vi ) =

¢
ρ(vi )

P

¥

If we want to distinguish between the afore defined types, we have to add the indi­
vidual memories.

m(vi ) =

¢
ρ◦(vi )

P

¥

+

¢
ρ⊳(vi )

P

¥

+

¢
ρ⊲(vi )

P

¥

(3.54)

3.7.1 Lifetime Constraints

The afore proposed MIPs can be augmented by the following constraints in order to
determine the different lifetime types of the variables.

Additional input:
• None

Additional output:

• Lifetimes ρ◦(vi ), ρ⊳(vi ), and ρ⊲(vi ) of each node vi ∈V

Additional constraints:

ρ◦(vi ) = max
∀v j∈V : e=(vi ,v j )∈F◦(vi )

�

τ(v j )− τ(vi )−wi

�

∀vi ∈V

ρ⊳(vi ) = max
∀v j∈V : e=(vi ,v j )∈F⊳(vi )

�

Λde + τ(v j )− τ(vi )−wi

�

∀vi ∈V

ρ⊲(vi ) = max
∀v j∈V : e=(vi ,v j )∈F⊲(vi )

�

Λde + τ(v j )− τ(vi )−wi

�

∀vi ∈V

where

F◦(vi ) = {e ∈ E | e = (vi , vk) ∈ E ∧ Φde = 0 ∧ de = 0}

F⊳(vi ) = {e ∈ E | e = (vi , vk) ∈ E ∧ Φde = 0 ∧ de 6= 0}

F⊲(vi ) = {e ∈ E | e = (vi , vk) ∈ E ∧ Φde 6= 0}

Lifetime constraints
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3.8 Scheduling for Weakly­Programmable Processor

Arrays

In the previously introduced scheduling methods, we have developed concepts for
global resource allocation in terms of the number of considered processing elements.
Simultaneously, local resource constraints, in terms of available functional units
within a processing element have been incorporated. Due to the freedom of high­
level synthesis, we were able to assume that all other necessary resources, such as a suf­
ficient number of data links between the processing elements or enough (shift) reg­
isters, in order to store intermediate data, are available. However, these assumptions
do not hold if a fixed processor architecture is considered. Then, not only the num­
ber of available processors and functional units is constrained but also the amount
of registers and communication channels is limited. In the following, we want to
show that almost the same scheduling methods may be applied for such a fixed class
of tightly­coupled, programmable processor arrays called weakly­programmable pro­
cessor arrays.

In the next section, we briefly introduce the class of weakly­programmable pro­
cessor arrays with emphasis on resources that have not been considered during sched­
uling yet. Afterwards, in Section 3.8.2 and Section 3.8.3 appropriate register and
channel constraints are formulated.

3.8.1 Weakly­Programmable Processor Arrays

In [HDK+05, KHKT06b], a new class of tightly­coupled, programmable multi­
processor architectures called weakly­programmable processor arrays (WPPA) has been
introduced. Such architectures consist of an array of weakly programmable pro­
cessing elements (WPPE) that may contain subword processing units with a small
local memory and a regular interconnect structure. In order to efficiently imple­
ment a certain algorithm, each PE may only implement a dedicated functionality.
Also, the instruction set is limited and may only be configured at synthesis­time.
The PEs are called weakly­programmable because of the control overhead of each
PE is optimized to a minimum. For example, there is no support for interrupts
and exceptions. An example of such an architecture is shown in Figure 3.27. The
massive parallelism might be expressed on different levels: (a) several parallel work­
ing processing elements, (b) multiple functional units within one PE, and finally
(c) subword parallelism within the PEs. WPPAs can be seen as a compromise be­
tween programmability and specialization by exploiting architectures, to realize the
full synergy of programmable processor elements and dedicated processing units.
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Figure 3.27: Example of a WPPA with parameterizable processing elements
(WPPEs). A WPPE consists of several functional units. Few registers and a spe­
cial data memory exists to store temporary computation results. An instruction se­
quencer exists as part of the control path, which executes a set of control instructions
from a small local program memory. The WPPEs are interconnected via channels
among each other.

Apart from the instruction memory within a processor, each processor has three
different types of memory elements for data storage. These memory types directly
correspond to the different types of lifetimes defined in Section 3.7.

Input buffer: Each input of a processor is buffered by a FIFO. We call this resource
type input buffer denoted by r⊲. The maximum length of the buffers l max

⊲
is

defined at synthesis­time. The overall number of available input buffers of the
same type is denoted by α(r⊲). In the example of a WPPA in Figure 3.27, two
input buffers i0 and i1 are depicted.

Register: Each processor has several data registers r◦. These are part of a register file
of size α(r◦). (Registers r0 to r11 in Figure 3.27.)

Feedback shift register: A feedback shift register (FSR) r⊳ is an internal buffer for
data reuse purposes. It is implemented as a shift register where its output
is fed back to its input. The maximum length of the FSRs l max

⊳
is defined

at synthesis­time. At run­time, these registers can have an arbitrary integral
length l⊳, ranging from one register up to the defined maximum (1 ≤ l⊳ ≤
l max
⊳

). The overall number of available feedback shift registers is denoted by
α(r⊳). In Figure 3.27, the FSRs are labeled from f0 to f3. The exact semantics
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of a feedback shift register is as follows. Let (a1,a2, . . . ,al⊳
) denote the values of

a feedback shift register of length l⊳. In case of a write operation (write value
ai n) to the shift register, its contents change as follows.

ai n → (a1,a2, . . . ,al⊳
) ⇒ (ai n,a1, . . . ,al⊳−1)

In case of a read operation (read value aout ) from the shift register, its contents
change as follows.

(a1,a2, . . . ,al⊳
) ⇒ (al⊳

,a1, . . . ,al⊳−1) → aout = al⊳

Note, the output ports (o0 and o1 in Figure 3.27) are direct outputs. That is, if
data is written to an output port, it is immediately transferred to the input port
of a connected target processor. But, in addition, it is stored in an output register
and can be accessed just like a general purpose register until another instruction
writes data to the same output port. This concept is advantageous, for instance,
when propagating variables through the array and simultaneously holding them for
a certain time within a WPPE.

3.8.2 Register Constraints

As stated in the last section, only the lifetime of type ρ◦ variables corresponds to reg­
isters that are necessary within one iteration. Hence, it seems obvious that a similar
resource constraint as in the case of the functional units can be used. Therefore, new
binary variables yi ,k ,t ∈ {0,1} are defined. Let gk ′ ∈ VT denote a register type21. A
binary variable yi ,k ′,t equal to the value one denotes that a node (variable) vi ∈ V
of a given RDG G = (V , E , D) is stored at time step t in a register of type gk ′ .
The following constraint ensures that each variable/node vi is stored exactly once
per iteration.

∑

∀k ′ : (vi ,gk′
)∈ER

h ′
i∑

t=l ′
i

yi ,k ′,t = 1 ∀vi : vi ∈V ∧ F◦(vi ) 6= ;(3.55)

where

l ′
i
= li + min

∀i : (vi ,rk )∈ER

�

w(vi , rk)
�

and h ′
i
= hi + max

∀i : (vi ,rk )∈ER

�

w(vi , rk)
�

21The breakdown into several types of registers can be useful for clustered registers banks [ZLAV03].
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Just as a reminder, the resource constraints of the functional units have been formu­
lated as follows.

∑

∀i : (vi ,rk )∈ER

δ(rk )−1∑

d=0

∑

∀ν∈Z : li≤t−d−νP≤hi

xi ,k ,t−d−νP ≤ α(rk) ∀rk ∈VT

∀t : 0≤ t ≤ P − 1

The register allocation can be stated in a similar fashion

∑

∀i : (vi , gk ′ ) ∈ ER

∧ F◦(vi ) 6= ;

ρ◦(vi )−1∑

d=0

∑

∀ν∈Z : l ′
i
≤t−d−νP≤h ′

i

yi ,k ′,t−d−νP ≤ α(gk ′) ∀gk ′ ∈VT

(3.56)

∀t : 0≤ t ≤ P − 1

Since the upper bound of the second sum, the lifetime, is not known a priori, new
binary variables ρi , j ∈ {0,1} are introduced in order to encode the lifetime ρ◦(vi ) ≤
ρmax (vi ).

ρ◦(vi ) =
ρmax (vi )∑

j=1

jρi , j

ρmax (vi )∑

j=0

ρi , j = 1

Afterwards, Equation (3.56) can be decomposed as follows.
∑

∀i : (vi , gk ′ ) ∈ ER

∧ F◦(vi ) 6= ;

Yi ,k ′,t ≤ α(gk ′) ∀gk ′ ∈VT(3.57)
∀t : 0≤ t ≤ P − 1

where

Yi ,k ′,t =
ρ◦(vi )−1∑

d=0

∑

∀ν∈Z : l ′
i
≤t−d−νP≤h ′

i

yi ,k ′,t−d−νP(3.58)

Yi ,k ′,t =









∑

∀ν∈Z : l ′
i
≤t−νP≤h ′

i

yi ,k ′,t−νP if ρ◦(vi ) = 1

1∑

d=0

∑

∀ν∈Z : l ′
i
≤t−d−νP≤h ′

i

yi ,k ′,t−d−νP if ρ◦(vi ) = 2

...
...

ρmax (vi )−1∑

d=0

∑

∀ν∈Z : l ′
i
≤t−d−νP≤h ′

i

yi ,k ′,t−d−νP if ρ◦(vi ) = ρmax (vi )

(3.59)
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Yi ,k ′,t =









Yi ,k ′,t ,1 =
∑

∀ν∈Z : l ′
i
≤t−νP≤h ′

i

yi ,k ′,t−νP if ρi ,1 = 1

Yi ,k ′,t ,2 =
1∑

d=0

∑

∀ν∈Z : l ′
i
≤t−d−νP≤h ′

i

yi ,k ′,t−d−νP if ρi ,2 = 1

...
...

Yi ,k ′,t ,ρmax (vi )−1 =
ρmax (vi )−1∑

d=0

∑

∀ν∈Z : l ′
i
≤t−d−νP≤h ′

i

yi ,k ′,t−d−νP if ρi ,ρmax (vi )
= 1

(3.60)

Since it is assumed that ρmax(vi ) is sufficiently large in Equation (3.60), all of the
cases on the right­hand side have fixed bounds and thus these constraints could be
generated in a MIP. It remains to figure out, how the appropriate case on the right­
hand side is selected and assigned to variable Yi ,k ′,t . Equation (3.60) is equal to a
one­hot multiplexer22.

Theorem 3.8 (One­hot multiplexer). A one­hot multiplexer is defined by the follow­
ing equation

y =









a1 if β1 = 1
a2 if β2 = 1

...
an if βn = 1

where β1,β2, . . . ,βn ∈ {0,1} and
n∑

i=1

βi = 1 is equivalent to the following set of in­

equalities.

y ≤ a1+M a
1
(1−β1)

y ≥ a1−M b
1
(1−β1)

y ≤ a2+M a
2
(1−β2)

y ≥ a2−M b
2
(1−β2)

...

y ≤ an +M a
n
(1−βn)

y ≥ an −M b
n
(1−βn)

22A one­hot multiplexer is an n­to­1 multiplexer, which has n binary select signals, where only one
select signal stays at value 1 at any time.
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Here, M a
i

and M b
i

, i ∈ [1..n] are big­M constants23 that should be large enough to
suffice to y ≤ ai +M a

i
and y ≥ ai −M b

i
.

Proof. Let us consider one β j = 1. Then, all other binary variables have to be zero

since
n∑

i=1

βi = 1 must hold. That is, all βi with i 6= j have to satisfy

y ≤ ai +M a
i

∧ y ≥ ai −M b
i

which is equal to the definition of the Big­M constants in the theorem. It remains to
consider the two inequalities for β j .

y ≤ a j +M a
j
(1−β j )

y ≥ a j −M b
j
(1−β j )

Since β j = 1, it follows y = a j .

The constants M a
i

and M b
i

, i ∈ [1..n], should be chosen as small as possible in order
to tighten the limits of the search space of the MIP.

Lemma 3.3. The Big­M constants M a
i

and M b
i

in Theorem 3.8 are sufficiently large if
they are chosen to be

M a
i
= max
∀ j∈[1..n]

(a j )− ai

M b
i
= ai − min

∀ j∈[1..n]
(a j )

Proof. Let ymi n and ymax be the minimal and maximal values of y. Then each "less
than" inequality can be bound by ymax

y ≤ ai +M a
i
(1−βi )≤ ymax ⇒ ai +M a

i
= ymax

and each "greater than" inequality has the lower bound ymi n

y ≥ ai −M b
i
(1−βi )≥ ymi n ⇒ ai −M b

i
= ymi n

With ymi n =min∀ j∈[1..n](a j ) and ymax =max∀ j∈[1..n](a j ) the proof is concluded.

23Big­M constants are used to reformulate a logic or nonconvex constraint in a MIP to a set of
constraints describing the same feasible set, using additional constraints and auxiliary binary variables.
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If Lemma 3.3 is applied to the afore presented constraints, the following Big­M
constants are obtained.

M a
i ,k ′,t , j

= max
∀l∈[1..ρmax (vi )]

(Yi ,k ′,t ,l )−Yi ,k ′,t , j ∀ j : 1≤ j ≤ ρmax(vi )

M b
i ,k ′,t , j

= Yi ,k ′,t , j − min
∀l∈[1..ρmax (vi )]

(Yi ,k ′,t ,l ) ∀ j : 1≤ j ≤ ρmax(vi )

Since Yi ,k ′,t , j and Yi ,k ′,t ,l are variables of the MIP, the Big­M constants cannot be
computed in advance, with the exception, that upper bounds can be determined for
Yi ,k ′,t , j and Yi ,k ′,t ,l .

Theorem 3.9. Let j , t , P , l ′
i
, and h ′

i
be given integral numbers. Further, let j ≥ 1,

0≤ t < P , and yi ,k ′,t−d−νP ∈ {0,1}. Then, a variable Yi ,k ′,t , j that is defined by

Yi ,k ′,t , j =
j−1∑

d=0

∑

∀ν∈Z : l ′
i
≤t−d−νP≤h ′

i

yi ,k ′,t−d−νP

has

Yi ,k ′,t , j ≤ j

as upper bound.

Proof. Since Equation (3.55) must be satisfied, the inner summation can be at most
one. Thus, overall the double sum can be at most j .

The upper bound ρmax(vi ) of the lifetime should be chosen as small as possible and
calculated for each node vi individually in order to reduce the number of inputs of
the one­hot multiplexers and the number of variables in the MIP. A large enough
ρmax (vi ) can be estimated by considering the worst case in Equation (3.51).

ρmax(vi ) = max
∀v j∈V : e=(vi ,v j )∈F◦(vi )

�

max(τ(v j ))−min(τ(vi ))−min(wi )
�

(3.61)

= max
∀v j∈V : e=(vi ,v j )∈F◦(vi )

�

h j − li −min(wi )
�

In summary, the register constraints can be incorporated into the MIP as follows.
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Additional input:
• The set of resource types VT of the resource graph GR is extended

by register types gk ′

• Allocation α(gk ′) for all gk ′ ∈VT

Additional output:

• Register type binding if a valid schedule can be obtained for the
given register allocation

Additional constraints:

∑

∀k ′ : (vi ,gk′
)∈ER

h ′
i∑

t=l ′
i

yi ,k ′,t = 1 ∀vi : vi ∈V ∧ F◦(vi ) 6= ;

ρ◦(vi ) =

ρmax (vi )∑

j=1

jρi , j ∀vi ∈V

ρmax (vi )∑

j=0

ρi , j = 1 ∀vi ∈V

ρ◦(vi ) =
ρmax (vi )∑

j=1

jρi , j ∀vi ∈V

∑

∀i : (vi , gk ′ ) ∈ ER

∧ F◦(vi ) 6= ;

Yi ,k ′,t ≤ α(gk ′ ) ∀gk ′ ∈VT

∀t : 0≤ t ≤ P − 1

Yi ,k ′,t ≤Yi ,k ′,t , j +M a
i ,k ′,t , j

(1−ρi , j ) ∀gk ′ ∈VT

∀t : 0≤ t ≤ P − 1

∀i : (vi , gk ′) ∈ ER

∧ F◦(vi ) 6= ;

∀ j : 1≤ j ≤ ρmax (vi )

Yi ,k ′,t ≥Yi ,k ′,t , j −M b
i ,k ′,t , j

(1−ρi , j ) ∀gk ′ ∈VT

∀t : 0≤ t ≤ P − 1

∀i : (vi , gk ′) ∈ ER

∧ F◦(vi ) 6= ;

∀ j : 1≤ j ≤ ρmax (vi )

Register constraints
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Yi ,k ′,t , j =
j−1∑

d=0

∑

∀ν∈Z : l ′
i
≤t−d−νP≤h ′

i

yi ,k ′,t−d−νP ∀gk ′ ∈VT

∀t : 0≤ t ≤ P − 1

∀i : (vi , gk ′) ∈ ER

∧ F◦(vi ) 6= ;

∀ j : 1≤ j ≤ ρmax (vi )

where ρi , j ∈ {0,1} and

ρmax(vi ) = max
∀v j∈V : e=(vi ,v j )∈F◦(vi )

�

h j − li −min(wi )
�

F◦(vi ) = {e ∈ E | e = (vi , vk) ∈ E ∧ Φde = 0 ∧ de = 0}

M a
i ,k ′,t , j

= max
∀l∈[1..ρmax (vi )]

(Yi ,k ′,t ,l )−Yi ,k ′,t , j

M b
i ,k ′,t , j

= Yi ,k ′,t , j − min
∀l∈[1..ρmax (vi )]

(Yi ,k ′,t ,l )

l ′
i
= li + min

∀i : (vi ,rk )∈ER

�
w(vi , rk)

�

h ′
i
= hi + max

∀i : (vi ,rk )∈ER

�
w(vi , rk)

�

 

3.8.3 Channel Constraints

The channels or rather the I/O ports of a processor are considered as just another
resource type, which is shared among the operations it can be accessed by. Channels
or rather the input buffers of a WPPA are configured as FIFOs (cf. Figure 3.27).
Consider, an algorithm with a corresponding space mapping. Let de be a data de­
pendency that results in a data link between two processors Pa and Pb . If a value
is written by processor Pa to the output port associated with the data link to Pb ,
the value is instantaneously written to the channel so that it might be read from the
input port (buffer) of Pb in the next cycle. In Figure 3.28, the channel is depicted by
the horizontal line between the processors Pa and Pb , the tail of the arrow denotes an
output port of processor Pa, and the arrowhead an input buffer of processor Pb .

Definition 3.13 (Data link). Denote a DPRA with RDG G = (V , E , D) and space
mapping, defined by matrix Φ. A data dependency de of the algorithm is called data link
if it satisfies Φde 6= 0. That means, the data dependency results in a connection between
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two different processors. To each data link l = (p, c) a source node p ∈ V and a target
node c ∈V is associated. A data­link is also called inter­processor data dependency.

In the following it is assumed that all data links are unit data links.

Definition 3.14 (Unit data link). Let the processor space P be a dense space in Zn.
Then, a unit data link expresses an inter­processor data dependency between two proces­
sors Pa ∈P and Pb ∈P such that Pa − Pb is a unit vector.

The assumption of unit data links is no restriction since several techniques exist
to obtain unit data links. For instance, at algorithmic level there exist localization
methods [TR91] to decompose data dependencies into a sequence of shorter ones. At
architecture level, similar methods for routing have been developed [HT05,SM06d,
WKTH08c]. In Figure 3.29(a), a schematic diagram of a 4× 4 processor array with
a dependency in direction (2 1)T is shown. This dependency is decomposed into
three unit data links. The possible variants are depicted in Figure 3.29(b)­(d). It can
be seen that the number of necessary vertical and horizontal channels is always the
same. The basis of this behavior is the regularity of the considered algorithms. From
the hardware perspective, the advantages of unit data links is their regularity and
their shortness, which may lead to high clock frequencies. From the programming
perspective, unit data dependencies between processors have the advantage that in­
put and output variables directly correspond to one processor that produces the data
and one processor that consumes the data (see Figure 3.29(a)). Hence, they can be
considered during the allocation and scheduling phase. If the data is routed through
several other processors on the way to their destination, the allocation of processor
ports can only be indirectly obtained from the decomposition of the data depen­
dencies. However, this "routing freedom" does not reduce the number of allocated
channels as illustrated in the above example.

In contrast to the occupancy of a functional unit rk for a specific time w(vi , rk),
the situation for communication resources is different since production and con­
sumption of a data item is not directly coupled. Consider, for instance, two pro­
cessors Pa and Pb and a variable that should be written to an output port of Pa,
transfered over a channel to an input buffer of Pb , and is processed later in time.

Pa Pb

Figure 3.28: Illustration of the communication model of two processors Pa and Pb .
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11

(a) (b)

(c) (d)

producer consumer route through

Figure 3.29: In (a), a dependency in direction (2 1)T is shown. Three possible de­
compositions (routings) are shown in (b)­(d).

Here, the problem is that if several data dependencies have to share the same input
buffer, data might be processed out of order.
In general, two cases can be distinguished:

Case 1: If a dedicated input buffer is available for each inter­processor data depen­
dency, the conflict will not arise. The FIFO semantics holds since both proces­
sors work iteratively with the same iteration interval. Thus, the first processor
produces every iteration one data item and the second processor consumes ev­
ery iteration one data item.

Case 2: If two or more inter­processor data dependencies have to share the same in­
put buffer, it could happen that the FIFO semantics does not hold any longer.
That is, the communication pattern might be out of order. For illustration,
two examples are considered.

Example 1:
Two processors Pa and Pb are connected via one channel. In each processor,
a program is executed reiteratively. The cycle numbers within the processors
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are not global, that is, they vary from each other by an offset defined by the
schedule Λ. First, in cycle 10, a variable a is written by processor Pa to its
output port. After this, variable b is written to the same output port. Some
time later, the data is read in the same order (first a then b ) by processor Pb .
Hence, in this example, the FIFO semantics hold. Note that the variables in
parentheses right to the instructions denote an RDG node vi that is associated
with the operation. Consequently, the cycle number corresponds to τ(vi ). In
the example below, there exist two data links: (v1, v3) and (v2, v4).

Pa

cycle instruction
...

...
10 OUT = a (v1)

11 OUT = b (v2)
...

...

Pb

cycle instruction

0 a = IN (v3)
...

...
4 b = IN (v4)
...

...

Example 2:
This example is similar to the first one, with the same data links, (v1, v3) and
(v2, v4). But, the reading order of processor Pb is reversed, so that variable b is
read before variable a. Thus, the FIFO semantics is violated.

Pa

cycle instruction
...

...
10 OUT = a (v1)

11 OUT = b (v2)
...

...

Pb

cycle instruction

0 b = IN (v4)

1 a = IN (v3)
...

...

To distinguish from related work: In [SM06d, WKTH08c], primarily the routing
of data links has been discussed. Furthermore, it is assumed that enough random
access memory is available within a PE in order to store received data. But, the order
of memory accesses is not accounted for. In contrast, we do not consider the spatial
routing but the right communication order when dealing with FIFOs as input buffers
such as in case of WPPAs. In order to ensure the correct data flow, the semantics of
a FIFO has to be incorporated into the mixed integer program. For this purpose,
additional constraints have to be developed in the following.
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At first, the afore discussed examples are considered, where only two data links
share the same channel (input buffer). The write times of processor Pa are denoted
by τ′(v1) and τ′(v2), whereas the read times of processor Pb are denoted by τ(v3)

and τ(v4). The time steps τ′(vi ) are defined as τ′(vi ) = τ(vi ) +wi . In this case, the
following implications must hold in order to guarantee the FIFO semantics.

τ′(v1)< τ
′(v2) ⇒ τ(v3)< τ(v4)

τ′(v2)< τ
′(v1) ⇒ τ(v4)< τ(v3)

Generally, if an input buffer is shared by several data links, for each pair the afore
stated implications have to be satisfied.

Definition 3.15 (FIFO semantics). Consider a system consisting of a source processor,
a target processor, and a channel in between. The channel can buffer data since the time
steps of data production and consumption can be different. Let an RDG G = (V , E , D)
be given. Denote τ′(p1), . . . ,τ

′(pn) as n time steps of data production at the source
processor, with p1, . . . , pn ∈ Vout ⊆ V . At each time step only one piece of data can be
written to an output port of the source processor, τ′(pi ) 6= τ

′(p j ), ∀i , j ∈ [1..n] ∧ i 6= j .
Further, let τ(c1), . . . ,τ(cn), with c1, . . . , cn ∈ Vi n ⊆ V , be the n time steps, where the
data produced at time steps τ′(pi ), are consumed at the target processor. It is also assumed
that at each time step only one piece of data can be read from the input port of the
target processor, τ(ci ) 6= τ(c j ), ∀i , j ∈ [1..n] ∧ i 6= j . Causality is assured by the data
dependency constraint as defined in Equation (3.13) on page 73. Then, the channel has
FIFO semantics if the following implications are satisfied.

τ′(pi )< τ
′(p j ) ⇒ τ(ci )< τ(c j ) ∀i , j ∈ [1..n] : i 6= j(3.62)

τ′(p j )< τ
′(pi ) ⇒ τ(c j )< τ(ci ) ∀i , j ∈ [1..n] : i 6= j

Theorem 3.10 (FIFO constraint). The FIFO semantics according to Definition 3.15
and the implications in Equation (3.62) are equivalent to the following constraints

τ′(pi )− τ
′(p j ) < (1−βi , j )(h

′(pi )− l ′(p j )+ 1)

τ(ci )− τ(c j ) < (1−βi , j )(h(ci )− l (c j )+ 1)







∀i , j ∈ [1..n] : i 6= j
∧ pi , p j ∈Vout

∧ ci , c j ∈Vi n

where βi , j ∈ {0,1} are binary variables, l (c j ) denotes the earliest and h(ci ) the latest
possible starting time of the respective nodes. l ′(p j ) denotes the earliest and h ′(pi ) the
latest possible finishing time of node p j and node pi .

Proof. Since the FIFO semantics is defined for each data link pair separately, without
loss of generality, only two data links that share the same channel are considered in
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the following. Let two binary variables βp ∈ {0,1} and βc ∈ {0,1} be associated to
the conditions within the implications.

τ′(p1)< τ
′(p2) ⇒ βp = 1

τ′(p1)> τ
′(p2) ⇒ βp = 0

)

⇔ τ′(p1)<τ
′(p2)+M p (1−βp)(3.63)

τ(c1)< τ(c2) ⇒ βc = 1

τ(c1)> τ(c2) ⇒ βc = 0

«

⇔ τ(c1)<τ(c2)+Mc (1−βc )(3.64)

M p and Mc are big­M constants that should be chosen as small as possible. Since the
implications in Equation (3.63) and in Equation (3.64) are of the same type, only
the last one is considered for finding an adequate upper bound of Mc . In order to
obey the implications in Equation (3.64), it is sufficient if Mc equals τ(c1)−τ(c2)+1.
Since τ(c1) and τ(c2) are variables of the MIP, their predetermined ASAP (l ) and
ALAP (h) times are used for the estimation.

Mc =max{τ(c1)− τ(c2)}+ 1= h(c1)− l (c2)+ 1

Analogous M p can be bounded by

M p =max
�

τ′(p1)− τ
′(p2)

	

+ 1= h ′(p1)− l ′(p2)+ 1

The FIFO semantics is considered again.

(τ′(p1)<τ
′(p2) ⇒ τ(c1)< τ(c2)) ⇔ (βp = 1 ⇒ βc = 1)

(τ′(p2)<τ
′(p1) ⇒ τ(c2)<τ(c1)) ⇔ (βp = 0 ⇒ βc = 0)

In the first implication, βp and βc are both equal to one and in the second im­
plication both are equal to zero. Consequently, the binary variables are in logical
conjunction, and thus they can be equated to β=βp =βc .

τ′(p1)< τ
′(p2)+ (h

′(p1)− l ′(p2)+ 1)(1−β)

τ(c1)< τ(c2)+ (h(c1)− l (c2)+ 1)(1−β)

In order to formulate appropriate resource constraints for handling the number of
available channels, the RDG edges that are associated with input and output ports
have to be determined. The set EI O contains all edges e ∈ E for which Φde 6= 0.

EI O = {e ∈ E | Φde 6= 0}

⇒ Vout = {p | (p, c) ∈ EI O} and Vi n = {c | (p, c) ∈ EI O}

It should be noted that input and output variables are not treated separately since
data dependencies that leave the iteration space (array) at the borders can be used
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instead. That is, an input or output port is either occupied by a data link (inter
processor communication) or by global I/O.

The resource graph is extended by further resources, namely each input port
instance pk i n and output port instance pkou t of a processor is added to the set VT . It
is important to consider each port separately in order to have a unique binding from
nodes to ports, because nodes that are bound to the same input port must have a
common FIFO constraint.

A binary variableβi ,kou t ,t ∈ {0,1} denotes that node pi ∈Vout occupies the output
port pkou t ∈ VT at time step t . Analogous, a binary variable βi ,k i n ,t ∈ {0,1} denotes
that node ci ∈Vi n occupies the input port pk i n ∈VT at time step t .

Consider an edge (pi , ci ) that reflects an inter­processor data dependency from
processor Pa to processor Pb . At time step τ′(pi ), processor Pa has to write data to its
output port, and at time step τ(ci ), processor Pb reads the data from its input port.
For all nodes pi that belong to set Vout , the following constraints are formulated.

∑

∀kou t : (pi ,pkou t )∈ER

h ′(pi )∑

t=l ′(pi )

tβi ,kou t ,t = τ
′(pi ) ∀pi ∈Vout(3.65)

∑

∀kou t : (pi ,pkou t )∈ER

h ′(pi )∑

t=l ′(pi )

βi ,kou t ,t = 1 ∀pi ∈Vout(3.66)

The constraint in Equation (3.65) ensures that an output port of the processor is
exactly occupied at the finishing time of the operation associated with node pi . The
constraint in Equation (3.66) denotes that a node pi should be executed every time
on the same output port instance and exactly once per iteration.

Similar constraints have to be considered for the input ports. Here, the only
difference is that in the constraint in Equation (3.67) the starting time of node ci is
synchronized with the port access.

∑

∀k i n : (ci ,p
ki n )∈ER

h(ci )∑

t=l (ci )

tβi ,k i n ,t = τ(ci ) ∀ci ∈Vi n(3.67)

∑

∀k i n : (ci ,p
ki n )∈ER

h(ci )∑

t=l (ci )

βi ,k i n ,t = 1 ∀ci ∈Vi n(3.68)

The FIFO constraints must be generated for all nodes that share the same output
or input buffer. Since the first time, the binding of nodes to ports is determined, is
during the scheduling, the FIFO constraints have to be modified in such a way that
they affect only nodes grouped to the same port. Hence, the idea is to generate a set
of FIFO constraints for each port that contains binary variables βi ,kou t ,t and β j ,kou t ,t
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or βi ,k i n ,t and β j ,k i n ,t as a selector to indicate if the constraint is active or if it has no
impact.

τ′(pi )− τ
′(p j ) < (1−βi , j )(h

′(pi )− l ′(p j )+ 1)

+ M p (2−
h ′(pi )∑

t=l ′(pi )

βi ,kou t ,t

−

h ′(p j )∑

t=l ′(p j )

β j ,kou t ,t )

∀(pi , ci ), (p j , c j ) ∈ EI O : pi 6= p j

∀k out : (pi , pkou t ) ∈ ER

∧ (p j , pkou t ) ∈ ER

τ(ci )− τ(c j ) < (1−βi , j )(h(ci )− l (c j )+ 1)

+ Mc (2−
h(ci )∑

t=l (ci )

βi ,k i n ,t )

−

h(c j )∑

t=l (c j )

β j ,k i n ,t )

∀(pi , ci ), (p j , c j ) ∈ EI O : ci 6= c j

∀k i n : (ci , pk i n ) ∈ ER

∧ (c j , pk i n ) ∈ ER

It can be easily verified that suited lower bounds for the big­M constants are defined
by M p = h ′(pi )− l ′(p j ) and Mc = h(ci )− l (c j ). Then, in summary, the afore in­
troduced MIPs can be augmented by the following constraints in order to handle
channel constraints.
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Additional input:
• Set VT of resource types augmented by all input and out port instances

Additional output:

• Binding of input and output variables to processor ports if a valid schedule
can be obtained for the given channel constraints

Additional constraints:

∑

∀kou t : (pi ,pkou t )∈ER

h ′(pi )∑

t=l ′(pi )

tβi ,kou t ,t = τ
′(pi ) ∀pi ∈Vout

∑

∀kou t : (pi ,pkou t )∈ER

h ′(pi )∑

t=l ′(pi )

βi ,kou t ,t = 1 ∀pi ∈Vout

∑

∀k i n : (ci ,p
ki n )∈ER

h(ci )∑

t=l (ci )

tβi ,k i n ,t = τ(ci ) ∀ci ∈Vi n

∑

∀k i n : (ci ,p
ki n )∈ER

h(ci )∑

t=l (ci )

βi ,k i n,t = 1 ∀ci ∈Vi n

τ′(pi )− τ
′(p j ) < (1−βi , j )(h

′(pi )− l ′(p j )+ 1)

+ M p (2−
h ′(pi )∑

t=l ′(pi )

βi ,kou t ,t

−

h ′(p j )∑

t=l ′(p j )

β j ,kou t ,t )

∀(pi , ci ), (p j , c j ) ∈ EI O : pi 6= p j

∀kout : (pi , pkou t ) ∈ ER

∧ (p j , pkou t ) ∈ ER

τ(ci )− τ(c j ) < (1−βi , j )(h(ci )− l (c j )+ 1)

+ Mc (2−
h(ci )∑

t=l (ci )

βi ,k i n ,t )

−

h(c j )∑

t=l (c j )

β j ,k i n ,t )

∀(pi , ci ), (p j , c j ) ∈ EI O : ci 6= c j

∀k i n : (ci , pk i n ) ∈ ER

∧ (c j , pk i n ) ∈ ER

where

EI O = {e ∈ E | Φde 6= 0} Vout = {p | (p, c) ∈ EI O}

Vi n = {c | (p, c) ∈ EI O} M p = h ′(pi )− l ′(p j ) Mc = h(ci )− l (c j )

Channel constraints
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3.9 Summary

After elaboration and differentiation from related work, a continuous and modular
scheduling concept has been formulated in this chapter. Since in data flow domi­
nated areas as, for instance, multimedia and other digital signal processing, through­
put is often the major optimization goal, exact scheduling methods based on mixed
integer programming have been chosen. Starting from well­known results on linear
scheduling, further constraints were developed in a step­by­step procedure. The con­
straints can be classified as global allocation, which includes projection, partitioning,
and multi­level partitioning, as well as local allocation, consisting of the number
of functional units, module selection, and functional pipelining, and can serve as
modular extensions to MIPs. The proposed methods allow the simultaneous opti­
mization of schedules on different levels within the processors and at processor array
level, with respect to the aforementioned resource constraints. Particular worthy of
mention, are the novel serialization concepts for scheduling partitioned algorithms
for arbitrary parallelotope­shaped tiles.

Furthermore, for the first time, an exact method has been derived that regards
software pipelining for programs with multi­dimensional data flow in consideration
of iteration dependent as well as run­time dependent conditions and awareness of
limited resources at different levels (for instance, number of functional units within
a processor and the total number of processors). The concept was enabled by the
introduction of the so­called AND­XOR­trees (AXT) that express the relationship
between operations. Based on the concept of AXTs, new MIP constraints have been
presented.

The modularity of the proposed concept has been utilized in order to incorporate
further constraints for the number of available registers and communication chan­
nels between processors that are necessary to target a special class of tightly­coupled,
programmable processor arrays, called weakly­programmable processor arrays.
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Target Code Generation

In this chapter, it is described how the information obtained during the allocation
and scheduling phases can be utilized in order to generate code for a given target
architecture. As discussed earlier, these target architectures can be either dedicated
hardware accelerators or weakly­programmable processor arrays. In the first case,
the question is, how to generate a synthesizable hardware description that can be
further refined by standard vendor tools for FPGA or ASIC designs. In case of WP­
PAs, assembly code for each processor and reconfiguration data for the interconnect
between the processors has to be generated.

For a better understanding of the entire design methodology, the PARO synthesis
tool, which has been developed in the course of this thesis, is introduced in this
chapter. Afterwards, the code generation for both dedicated hardware accelerators
and WPPAs are briefly described. As an introduction, the chapter starts with an
overview of related work.
The major contributions of this chapter can be summarized as follows:

• Related work in the area of high­level synthesis tools and embedded proces­
sor arrays is given in Section 4.1 with an emphasis on recent approaches for
accelerating loop programs.

• The entire design flow of the PARO synthesis tool is presented at a glance in
Section 4.2. Its uniqueness is the applicability to target different architectures,
which are classically tackled with totally different design methods.

• A systematic approach for the synthesis of dedicated hardware accelerators con­
sisting of several processor elements, interconnect, and control structures, is
presented in Section 4.3. For the first time, a method for the code genera­
tion for tightly­coupled, programmable processor arrays is described (see Sec­

143



4. Target Code Generation

tion 4.4). The approach starts from almost the same allocation and scheduling
information as the synthesis method for dedicated hardware accelerators.

4.1 Related Work

This section about related work considers two aspects. The first part is concerned
with the synthesis of processor arrays and current high­level synthesis tools from
industry as well as approaches from academia. The second part examines mapping
approaches for coarse­grained reconfigurable architectures and embedded multi­pro­
cessor arrays.

4.1.1 High­Level Synthesis Approaches and Tools

In the following, related work in the field of systolic and VLSI processor arrays is re­
viewed first. Subsequently, several approaches that specially focus on the synthesis of
computationally intensive programs are discussed. Finally, selected general purpose
high­level synthesis approaches, based on C, C++, and SystemC, are presented.

4.1.1.1 Design Tools for Systolic and VLSI Processor Arrays

There is a long history in the systematic design of systolic and VLSI processor ar­
rays [Pla99]. Many authors present tools and methods for the design of such ar­
rays. The following list of older approaches is neither exhaustive nor discussed in
detail. Examples of tools and approaches for the design of processor arrays include
DIASTOL [FGQ86], ADVIS [Mol87], DECOMPOSER [HOI88], VACS [KJ88],
SYSTARS [Omt88], SDEF [EC89], HiFi [AD88], PRESAGE [Don88, Don92],
MSSM [HH92], VASS [YCJ96], and DG2VHDL [SM00]. All the afore mentioned
tools consider algorithms only at iteration level and not the functionality within
an iteration. The approaches neither start from a well defined input language nor
provide the possibility to synthesize a hardware description. Furthermore, only the
design of full size processor arrays is possible, that means, the size of the processor
array depends on the problem size.

Approaches that employ a programming language as input specification are pre­
sented in [OF88,GMQS89,LMQ91,NGCD91,ATT92,TA93,Tei93,Bur94,Veh95,
SFS+95]. RAB [OF88] is a programming tool for the design of bit level processor ar­
rays starting from an input description in the language C. The authors in [GMQS89]
present the Alpha Du Centaur environment for the design of parallel regular algo­
rithms. Here, a proprietary language named Alpha [LMQ91] is used as input and
interpretable LUSTRE code [CPHP87] is generated as output.
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In [NGCD91], the authors present Cathedral, a high­level synthesis script for
the design of DSP applications. In order to describe the behavior of an input al­
gorithm the language Silage [Hil85] is used. COMPAR [ATT92, TA93] and CAS­
PAR [Tei93] are compilers for the design of application­specific processor arrays.
As design entry a subset of the parallel programming language UNITY [CM88] is
considered. Starting from a piecewise linear algorithm formulated in this input lan­
guage, Teich [Tei93] presents an entire design trajectory down to an abstract array
description. The main steps in his proposed design flow include localization, control
generation, and hardware matching. However, an appropriate schedule has to be de­
fined manually and the abstract array description has to be refined by hand in order
to obtain a synthesizable array structure. In [Bur94], Burleson present the ARREST
environment for the design of fine­grained processor arrays. The arrays are speci­
fied by a structural hardware description language that contains constructs for the
repetitive generation of regular structures. DECOMP [Veh95] and the LISA design
environment [SFS+95] use Pascal as input language and generate an EDIF netlist as
output. However, the generality and applicability of the proposed environments is
questionable since the approach is only applied to a single simple algorithm.

4.1.1.2 Tools and Approaches for the Acceleration of Loop Programs

The following approaches all describe work based on loop parallelization techniques
in the polytope model [Len93, Fea96], which is similar to our methodology. They
aim at the synthesis of one dedicated hardware accelerator for a given loop program.

MMAlpha. MMAlpha [GQR03] is a transformation tool­box developed at IRISA
in Rennes, France. Programs written in the Alpha language are considered [LMQ91]
as design entry. A program written in Alpha describes a system of recurrence equa­
tions. MMAlpha consists of a set of Mathematica packages [Wol96b] enabling a
design trajectory down to synthesizable VHDL code. Scheduling techniques for
both, one and multi­dimensional time, are available [Fea92a, Fea92b]. However,
MMAlpha does not contain any architectural modeling possibilities as for instance,
multi­cycle operations, module selection, or resource constrained scheduling.

PICO­NPA. The PICO (program in, chip out) project developed at the Hewlett­
Packard Laboratories [SAR+00b, SAR+00a, KAS+02] automates the design of appli­
cation­specific embedded computer systems. It uses an architecture template that
consists of one VLIW processor and an optional non­programmable accelerator
(NPA). The second part is referred to as PICO­NPA [SAM+02] and aims at the gen­
eration of hardware accelerators for computationally intensive functions, expressed as
loop nests in C. PICO­NPA includes transformations for the minimization of global
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memory accesses (instantiation of local registers and exploitation of uniform data
dependencies) and rectangular tiling. In case of tiling, the loop nest is extended by
one outer loop that is implemented in software on the host processor, and the inner
loops are synthesized as an NPA. Scheduling is performed in a hierarchical fashion.
First, a schedule between the iterations is determined, before the offsets for each op­
eration within the loop body are computed subsequently. The research project has
been commercialized by Synfora [Syn09] in the product PICO Express.

SA­C Compiler. The SA­C compiler [RCP+01, NBD+03] within the Cameron
project provides a mapping method from single assignment C (SA­C) source code
to executable FPGA configurations. SA­C is a variant of the programming language
C. It exploits instruction­level and loop­level parallelism. The compiler focuses on
image processing application. SA­C programs are compiled into data flow graphs.
The method tries to maximize locality by reusing data and common subexpressions.
The final translation into VHDL is based on a template library.

Compaan/Laura. The Compaan tool translates Matlab applications into a poly­
hedral reduced dependence graph [KRD00]. For that, Compaan performs an exact
analysis of the data dependencies by taking the instances of arrays into account.
The method is based on parametric integer programming [Fea88]. Once obtained,
the reduced dependence graph is converted into a Kahn process network (KPN)
[Kah74, LP95]. Such a network consists of nodes, executing processes, and channels
with FIFO semantics in between. The Laura tool [ZSKD03,SZT+04] generates syn­
thesizable VHDL code from the KPN specification. Here, pre­synthesized coarse­
grained IP cores should be used as process nodes in order to keep the number of FI­
FOs in the design small. Out­of­order communication is handled by the considera­
tion of reordering memories [TKD05]. In conclusion, the Compaan/Laura approach
targets communicating processes/loops rather than exploiting software pipelining
and instruction­level parallelism of a single loop nest.

ROCCC. In [GN06, BGN06], the authors present the Riverside Optimizing Com­
piler for Configurable Computing (ROCCC). ROCCC is a compiler for FPGAs
based on SUIF2 [SUI] and Machine­SUIF [SH02], which employs many conven­
tional transformations such as loop unrolling or scalar replacement. As input a subset
(no pointers, no break or continue statements, only static for loops, linear indexing
functions, etc.) of C is used. ROCCC has a strong emphasis on filter and image
processing algorithms with window operators. Here the authors developed the con­
cept of so­called smart buffers [GBN04] in order to decouple memory access from
computations and to increase data reuse. For address generation, a parameterizable
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VHDL template of a finite state machine is used. Nevertheless, the concept is not
able to store entire rows of an image, as required by windowing algorithms (for in­
stance, two­dimensional convolution). Thus, some main memory addresses have to
be accessed several times [DZD+08]. This effect is tolerable since the authors target
a SGI RASC RC100 blade [SGI09] with a high­speed NUMAlink direct memory
connection. ROCCC is also able to synthesize full­size systolic arrays [BN08] but
not partitioned arrays.

The authors in [BRS07] present a framework for the mapping of perfectly nested
loops with uniform dependencies onto the FPGA extension of the Cray XD1 high
performance computer. The approach considers LSGP partitioning and purely linear
scheduling without any affine part. The degree of automation seems to be in a very
early state since matrix multiplication is the only example discussed.

The authors in [CHM08] and [KLB08] present approaches that are based on a
VLIW architecture template and standard compilers.

Bluespec. Bluespec [Blu09] performs hardware synthesis, starting from an opera­
tion centric description, where the behavior of a system is described as a collection of
atomic operations in the form of rules [HA00]. Such a rule is typically defined by a
predicate condition and an effect on the state of the system. The main advantage of
considering atomic operations is that each rule can be formulated as if the rest of the
system is static. Originally, Bluespec’s design entry was done in form of a Haskell like
syntax. Currently, Bluespec uses a subset of System Verilog, called BSV that makes
use of term rewriting systems [HA99]. During synthesis, the Bluespec compiler tries
to schedule as many conflict­free rules as possible.

4.1.1.3 High­Level Synthesis Tools and Approaches based on C, C++, or

SystemC

There exist a number of high­level synthesis tools and approaches that is based on
the languages C, C++, or SystemC [SSV08].

Commercial Systems. Commercial examples of such systems include Catapult­
C from Mentor Graphics [Men09], Forte Cynthesizer [For09], Agility Compiler
from Celoxica [CEL09], PICO Express from Synfora [Syn09], AutoPilot [ZFJ+08],
ImpulseC [Imp09], Nios II C­to­Hardware Acceleration Compiler (C2H) from Al­
tera [Alt08], and CHiMPS from Xilinx [PBD+08].

147



4. Target Code Generation

Apart from commercial systems, there exist several C­based synthesis approaches in
academia. Here, we only mention some well­known and recent approaches. For
instance, the DEFACTO [BDD+99, DHP+05] synthesis system employs scalar re­
placement for data reuse and unroll­and­jam for code reordering.

In the Nimble framework [LCD+00], a hardware/software partitioning algo­
rithm is contained that partitions applications into control code, running on a CPU,
and computationally intensive code for the datapath (the FPGA).

SPARK [GDGN03,GGDN04] is a framework for compiling applications, spec­
ified in a subset of C, to FPGAs. Here, compiler transformations have been re­
instrumented for synthesis by incorporating ideas of mutual exclusive operations,
resource sharing and hardware cost models. The SPARK methodology is particularly
targeted to control­intensive microprocessor functional blocks, as well as multimedia
and image processing applications. A hardware/software partitioning algorithm that
distributes applications to a CPU and an FPGA is also contained in the framework.
However, SPARK is restricted to one­dimensional arrays.

The ASC system [Men06] is a stream compiler for computation on FPGAs. It
provides optimizations on the algorithm level, the architecture level, the arithmetic
level, and the bit level within the same given C++ program.

Comrade [GK07] is a compiler for combined hardware/software solutions of re­
configurable systems. It uses speculation techniques in order to increase the perfor­
mance.

Trident [TGP07] is an FPGA compiler framework for floating­point algorithms
based on LLVM [LA04].

SystemCoDesigner [KSS+09] is a tool at electronic system level (ESL) that in­
cludes the automatic optimization of an implementation consisting of hardware and
software, with respect to several objectives. Behavioral descriptions written in Sys­
temC are used as design entry. SystemCoDesigner extracts the mathematical model,
performs behavioral synthesis, and explores the multi­objective design space, using
multi­objective optimization algorithms. During design space exploration, a single
design point is evaluated by simulating performance models, which are also auto­
matically derived from the SystemC description and the behavioral synthesis results.
Since SystemCoDesigner is an actor­oriented approach, the parallelization of an ap­
plication at lower levels, such as instruction and data level, might introduce a large
number of communication (buffers) and control primitives.

All of the above mentioned design tools start from a subset of sequential C, C++,
or SystemC code. However, starting with sequential languages has the disadvantage
that their semantics force a lot of restrictions on the execution order of the program
(cf. Chapter 2). Another disadvantage of C­based hardware design is that most de­
sign tools only support a limited subset of the language. Porting existing, highly
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optimized C code to such a design environment is a time consuming task and often
ends in completely rewriting the code from scratch.

Furthermore, most existing tools do not allow high­level program transforma­
tions in order to match the input program to given architectural constraints (like
available memory or I/O bandwidth), or only to a limited extend.

4.1.2 Mapping Approaches for Coarse­Grained and Embedded

Multi­Processor Arrays

Some research work has been performed, studying compilation techniques for coarse­
grained reconfigurable architectures. For instance, the authors of [VNK+03] de­
scribe a compiler framework for analyzing SA­C programs, perform optimizations,
and automatically map the application onto MorphoSys [SLL+00], a row­parallel or
column­parallel SIMD (Single Instruction­stream Multiple Data­Stream) architec­
ture. This approach is limited since the synthesis order is predefined by the loop
order and no data dependencies between iterations are allowed. Another approach
for mapping loops onto coarse­grained reconfigurable architectures is presented by
Dutt and others in [LCD03]. Outstanding in their compilation flow is the target
architecture, the DRAA, a generic reconfigurable architecture template, which can
represent a wide range of coarse­grained reconfigurable arrays. The mapping tech­
nique itself is based on loop pipelining and partitioning of the program tree into
clusters, which can be placed on a line of the array.

The aforementioned approaches focus on the placement of operations in space
and time, whereas the authors in [PFM+08] propose a method that primarily focuses
on the routing problem, where a schedule is developed by routing each edge in the
data flow graph.

Other existing approaches that are based on compilation techniques are closely
related to approaches from the DSP world. These approaches employ several loop
transformations, like pipelining [WL01] or temporal partitioning, but, are not able
to exploit the full parallelism of a given algorithm and the computational potential
of a typical 2­dimensional array.

4.1.3 Unified Approaches

Only very few approaches are know that try to unify the synthesis of different archi­
tectures and the compilation to different targets, respectively.

MATCH. A compiler that starts from Matlab as input description is presented by
Banerjee et alii in [BSC+00]. The compiler, called MATCH (MATlab Compiler for
Heterogeneous computing systems), targets digital signal processors as well as the
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generation of code for FPGAs. For the DSP code generation the, single­program,
multiple­data (SPMD) paradigm of parallel execution is employed. The modus
operandi for hardware synthesis targeting FPGAs is rather straight forward. Nothing
about the support of high­level transformations is known.

Streamroller. Mahlke and others [KFM06, Kud08] present the Streamroller syn­
thesis system that is a unified compilation and synthesis system for streaming appli­
cations. The system can target the Cell multi­core architecture, but custom hardware
accelerators can be created by high­level synthesis as well. However, this high­level
synthesis is limited since it is compilation­centric, that means, starting with the SUIF
compiler infrastructure [WFW+94], the application is converted to assembly code
for the Trimaran [Tri09] compiler tool chain. Thus, the resulting architecture is
based on a VLIW template.

A similar approach is presented in [FKDM09] by the same authors. Here they
extend the VLIW template by control structures in order to handle multiple loop
programs. This class of loop accelerators is called semi­programmable by the authors.

4.2 The PARO Synthesis Tool

The PARO synthesis tool is a design environment for parallelizing and mapping
nested loop programs onto acceleration engines, which are typically part of an SoC.
A dedicated accelerator can be either derived from a single algorithm by high­level
synthesis or PARO can be used to derive the processor schedules in a WPPA. PARO
is entirely object­oriented written in the programming language C++. In the course
of this thesis, the development1 of PARO started in the end of 2004. Currently, it is
comprised of approximately 110 000 lines of code.

An overview of PARO’s design flow is depicted in Figure 4.1. The front end
of the system starts with a program written in the PAULA language, as described
in Section 2.2.2. An input program is parsed to obtain an internal representation,

1It should be mentioned that the term PARO as a design system and the term PARO methodology
are used considerably longer. A distinction from this older works follows: Bednara [BT03, Bed04]
presents a design system, which is based on the CASPAR design system [Tei93]. Around this system, a
number of loosely­coupled tools for the parallelization of C code [Bey02], scheduling and exploration
[HT01], and hardware synthesis [Bed04] were build. Scheduling is restricted to projection as global
allocation. Also, the hardware generation is restricted to projection along a vector in the first direction
(that means, the first iteration variable denotes the time axis).

The term PARO methodology is used in several previous works only for handcrafted mappings
of certain algorithms onto FPGAs [HT04a, DHT+06e], coarse­grained architectures [HDT04b,
HDT06], and tightly­coupled, programmable processor arrays [DHT06d]. In [RDHT05], the gen­
eration of dedicated FPGA­based hardware accelerators for a single parameterizable digital signal
processing application was demonstrated.
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which strongly relies on matrices and polyhedral objects. For instance, a compre­
hensive class for matrices offers a large number of operations, starting from operators
(for instance, * or +) for these objects to methods that determine, amongst others,
the determinant, rank, inverse, adjugate, Hermite normal form of a matrix. The
elements of a matrix are rational numbers, which are overflow save, since, if neces­
sary, the data type for the nominator or denominator of a rational can be switched
dynamically to a data type with arbitrary precision (GMP [The08]) at run­time. As
backbone for operations in the polyhedral model, PolyLib [Wil93, Pol07] is used.
It was initially developed by Doran Wilde at IRISA in Rennes and continuously
extended at the University of Strasbourg. Among others, we added a completely
symbolic handling of iteration variables and parameter names. Furthermore, we im­
plemented data structures for handling linearly bounded lattices and operations on
them, such as intersection, union, and others.

Based on a given algorithm, various source­to­source compiler transformations
[Muc97] and optimizations can be applied within the PARO design system. Among
others, these transformations include:

Constant and variable propagation. The propagation of variables and constants
leads to a more compact code and decreased register usage.
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Common sub­expression elimination. By data flow analysis, identical expressions
within a program can be identified. Subsequently, it can be analyzed if it is
worthwhile to replace an expression with an intermediate variable to store the
computed value.

Loop perfectization. Loop perfectization transforms non­perfectly nested loop pro­
gram into perfectly nested loops [Xue97].

Dead­code elimination. By static program analysis, program code can be deter­
mined that does not affect the program at all. This code, called dead code, can
either be code that is unreachable or it affects variables that are neither defined
as output variables nor used somewhere else in the program. Dead code might
result from other transformations such as common sub­expression elimination.

Affine transformations. Affine transformations of the iteration space are a popular
instrument for the parallelization of algorithms. Transformations such as loop
reversal, loop interchange, and loop skewing can be expressed by affine transfor­
mations [Wol96a]. In addition, affine transformations can be used to embed
variables of lower dimension into a common iteration space.

Strength reduction of operators. Strength reduction is a compiler transformation
that systematically replaces operations by less expensive ones. For instance,
in PARO, multiplications and divisions by constant values can be replaced by
shift and add operations.

Loop unrolling. Loop unrolling is a major optimization transformation, which ex­
poses parallelism in a loop program. Loop unrolling expands the loop kernel
by a factor of n by copying n − 1 consecutive iterations, which leads to larger
data flow graphs at the benefit of possibly more instruction level parallelism.

Localization. Algorithms with non­uniform data dependencies are usually not suit­
able for the mapping onto regular processor arrays as they result in expensive
global communication in terms of memory access. For that reason, a well
known transformation called localization [TR91] exists, which replaces affine
dependencies by regular dependencies. That means, it converts global commu­
nication into short propagation links to increase the regularity of the processor
array. Thus, localization transforms a DPLA into a DPRA.

Global allocation. Global allocation may be achieved through either projection
or diverse (hierarchical) partitioning schemes that can be selected (see Sec­
tion 3.2). In case of already partitioned algorithms, it is not necessary to keep
information about the tile shape/size. It is sufficient to symbolically denote
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the variable names which should be considered as local sequential or/and global
sequential during scheduling. Internally, the PARO system reconstructs other
necessary information (tile shape).

The heart of PARO is built by the allocation and scheduling methods, as described
in detail in Chapter 3. Here, latency optimal schedules under resource constraints
are derived. For the formulation and management of mixed linear integer programs,
a generic intermediate layer has been developed. This intermediate layer has the
advantage to decouple the formulation of the problem from the solving process.
Several back ends to commercial solvers CPLEX [ILO06] as well as to freely available
solvers (GLPK [GLP09], lp_solve [BDEN08], MiniSat [ES06], PIP [Fea88]) were
implemented.

Furthermore, several modules for the visualization of graphs (reduced depen­
dence graphs, AND­XOR­trees) and scheduling results (Gantt charts) were imple­
mented.

4.3 Synthesis of Dedicated Hardware Accelerators

This section briefly describes the synthesis of a dedicated hardware accelerator. The
synthesis can be subdivided into three parts:

1. Synthesis of the processor elements

2. Synthesis of the control structure

3. Synthesis of the interconnect structure

The synthesis of all parts generates a completely platform and language independent
register transfer level (RTL) description of the hardware, which is further optimized
and finally converted into HDL code of choice. Before describing the synthesis of
the three different parts, the processor elements are classified into different types.

4.3.1 Classification of Processor Elements

A result of the allocation as described in Section 3.3, is the processor space P ⊂ Zs .
The regular structure of a given DPRA leads to regular processor arrays, which may
be mapped to FPGAs or ASICs. However, not all processors p ∈ P need to execute
all equations of an algorithm. For example, in a regular processor array, only the
border processors are supposed to communicate with memory or I/O FIFOs. As a
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result, the processor space P can be expressed as a disjoint union of several processor
types Pi ⊆P:

P =

k⋃

i=1

Pi ∧ Pi ∩P j = ; : i 6= j

Such a processor array is called a piecewise regular array. In order to reduce hardware
costs, it is beneficial to generate specialized hardware implementations for each indi­
vidual processor type, which contain only those functional units that are required to
execute all equations defined for the corresponding processor type.

The first step of processor type classification is to calculate for each statement Si

within a given algorithm the set of processors PSi
, which executes this statement at

least once. Let the following equation of a DPRA in output normal form be given.

Si : xi[I ] =Fi(. . . , x j[I − d j i], . . .) if C
I
i
(I )(4.1)

Then, the corresponding set of processors PSi
can be obtained as follows.

PSi
=
n

p ∈P | p =ΦI +φ ∧ I ∈ {I ∩ I
C

I
i
(I )}
o

The processor types Pi can be obtained by finding intersection sets by pairwise com­
parison of all sets PSi

. Although the complexity is quadratic, in practice the decom­
position into several sets is feasible within a fraction of a second. For further details,
we refer to [Ruc06, HRDT08].

After processor type classification, the RTL structure for each individual proces­
sor type Pi can be synthesized (see Section 4.3.3) and each processor p ∈ P can be
instantiated in the array structure. In order to facilitate regular placement, especially
for 2­dimensional arrays on the chip, it is important that there exist only few differ­
ent processor types of similar size. The logical placement of a processor is equivalent
to its index p, while for the physical placement, data must be calculated depending
on its required area and the geometry of the chip, taking special purpose structures
of certain architectures into account, for instance hard­wired multipliers on FPGAs.

4.3.2 Synthesis of Interconnection Structure

In order to synthesize the processor interconnection structure, the data dependencies
of the DPRA have to be analyzed. With the help of Equation (4.1) and a space­
time mapping, as in Equation (3.1), Section 3.2, the synthesis of a processor inter­
connection for the data dependency d j i is done by first determining the processor
displacement as follows.

d p

j i
=Φ(I + d j i)−ΦI =Φd j i
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For each pair of processors pt and ps = pt +d
p

j i
with ps ∈P ∧ pt ∈P, a correspond­

ing connection has to be created from the source processor ps to the target processor
pt .

The time displacement denotes the number of time steps, the value of variable
x j [I + d j i] must be stored, before it is used to compute variable xi[I ] (cf. with
lifetime in Section 3.7). Let vi and v j denote the corresponding RDG nodes for xi

and x j . Then, the time displacement is given as follows.

d t
j i
=Λ(I + d j i )+ τ(v j )+w j −ΛI − τ(vi )(4.2)

=Λd j i + τ(v j )+w j − τ(vi )

As recapitulation, τ(v j ) is the relative start time of the execution of node v j , and w j

is the computation time of the associated operation (see Section 3.5). In processor ar­
rays, the time displacement is equal to the number of delay registers on the respective
processor interconnection. If the number of delay registers is large, controlled delay
registers, [BT01], [Bed04], FIFOs, or embedded memories are used. Of course, the
whole procedure must be repeated for each data dependency.

4.3.3 Synthesis of Processor Elements

A processor element consists of a local control logic (see Section 4.3.4) and the data
path, where the actual computations are done. The synthesis of a processor element
from the reduced dependence graph is performed as follows. If the instance binding
is not handled during the scheduling phase, it is done afterwards, using a modified
left­edge algorithm [Tei97, Ruc06].

During the phase of binding, a functional unit is assigned to each operation in the
loop body that will execute the operation. In case of reuse of functional units, input
multiplexers are required in order to select the correct operands in every time step.
The interconnection between the functional units can be directly derived from the
reduced dependence graph, whereas the number of time steps, an intermediate result
must be stored, can be computed by Equation (4.2). However, for data dependencies
with d j i = 0, that is, intra­iteration dependencies, instead of shift registers, only
simple registers are used to hold the intermediate results. Just like functional units,
these registers may also be reused during one iteration. Register binding is also done
using a modified left­edge algorithm, similar to resource instance binding.

4.3.4 Synthesis of Control Structure

In the context of regular processor arrays, synthesis of efficient control structures is
of high importance. The purpose of processor array control structures is to produce
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Figure 4.2: Overview of control architecture. Data path interconnect is not shown.
Shown is a distributed global/local control scheme.

control signals to orchestrate the correct computation of the algorithm on the array.
With this in mind, several different types of control signals must be generated:

• For algorithms with iteration dependent conditions, each processor must per­
form different operations and use different input data, depending on the cur­
rent iteration point I . That is, control signals for functional units as well as for
input multiplexers must be generated.

• If functional units are reused for multiple operations in the loop body, the
input multiplexers must be controlled to select the correct input data. The
same concept applies in the case of reusing internal registers.

• Multifunctional units like ALUs need to know which operation must be per­
formed in a certain time step.

• Finally, access to I/O memory and FIFOs requires additional control signals
and addresses to be generated.

In order to not limit the excellent scalability of regular processor arrays, it is im­
portant that the size of the control path remains nearly constant, regardless of the
problem size (that means, the size of iteration space |I|) and the size of the processor
array |P |.

In [DHT06b] and [DHRT07], we present a complete control methodology, that
provides all the required control functionality while being very efficient in terms
of area. This architecture is depicted in Figure 4.2 and briefly summarized in the
following section.
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The key characteristic of our control methodology is the use of combined global
and local control facilities. All control signals that are common to all processor
elements, except for a time delay, are generated by a global controller, outside (by
a host) or at the border of the array, and propagated through the array, whereas
local control is only necessary for signals that differ among the processor types. This
strategy reduces the required area and, in general, improves the clock frequency.
Because of the cyclic nature of iterative algorithms, most of the control demands can
be met using nested counters that produce counter signals, which are subsequently
decoded into specific control signals for multiplexers and functional units.

The central component of the control architecture is a global counter, which gen­
erates the non­constant parts of the iteration vector. The non­constant parts are the
iteration variables that not directly resemble a processor index p. The variable parts
of the iteration vector are obtained by scanning the tiles, as defined by loop matrices
and the scheduling vector. The sequence of counter signals is used to compute the
iteration dependent conditions. Here, one can identify conditions, which are inde­
pendent of the current processor index and thus can be evaluated by a global decoder
unit. Only the processor dependent conditions are subject to evaluation by local de­
coders within each processor. The globally evaluated conditions are propagated as
binary signals along with the counter signals and the appropriate delay through the
processor array [DHRT07].

Both the globally and locally decoded conditionals are transformed by an addi­
tional local controller into control signals for multiplexers and functional units. The
global iteration counter signals and conditions are only related to iteration points.
But in general, there are several operations scheduled at each iteration point (with
offset τ(vi )), so additional logic is required to assure the correct execution behavior
within one iteration period. In an iterative schedule, the iteration interval P defines
the number of time steps between the start of two subsequent iteration points. Since
the same sequence of control signals must be generated during every iteration inter­
val, the required control functionality can be implemented by a modulo­P counter.
Its output is connected to a decoder logic, which takes globally and locally evalu­
ated iteration dependent conditions into account, and finally generates the control
signals for the functional units and multiplexers. Of course, this counter could also
be implemented globally. However, cost analysis has shown that the required delay
registers would be more expensive than local modulo­P counters [DHRT07].
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4.4 Code Generation for Weakly­Programmable

Processor Arrays

As written earlier, when regarding weakly­programmable processor arrays as target ar­
chitecture, a considerable amount of additional mapping constraints have to be taken
into account. For instance, the number of registers and I/O ports per processor that
have to be considered during scheduling (cf. Section 3.8). Other constraints, such
as the size of the instruction memory within each processor, the number of available
control signals within the processor array, and the number of control signals that
can be simultaneously evaluated by the branch unit, are assumed to be sufficiently
available. Indeed, the control flow could be serialized with similar constraints as for
the data flow but then control would become the dominant part, which would be
contradictory to the philosophy of our methodology where control should have al­
most no overhead in terms of execution time. Furthermore, the architecture should
have a certain number of feedback shift registers within the processors and memory
structures at the borders of the array that can serve as intermediate memory when
partitioning an algorithm.

With the aforementioned assumptions and the characteristics of an algorithm as
stated in Section 3.8, the mapping flow could be summarized as follows.

4.4.1 Mapping Flow

In addition to an algorithm to be mapped, let a space mapping Φ (global allocation)
be given. The space mapping is defined by an appropriate partitioning, which should
match the algorithm with the architectural constraints in terms of number and size of
memories and I/O bandwidth. For further details, how to estimate necessary mem­
ory sizes and I/O traffic, we refer to the following works [Eck01, Dut04, DHT06d].

The pseudo code of Algorithm 4 describes the mapping flow for WPPAs. In
lines 1­7 of the algorithm, the number m of internal variables (Φde = 0) with a
lifetime greater than one period is counted. In line 8, the counted number m is
compared with the number of available feedback shift registers (FSR). If enough
FSRs are available, the mapping flow can continue with scheduling in line 11 of
the algorithm. Otherwise, for the given space mapping no solution exists and the
algorithm returns false (line 9). It may happen that the scheduling procedure cannot
determine a schedule because of the resource constraints are too strict or because of
the algorithm structure. In this case, the Boolean return variable β is false and the
mapping procedure also returns false.

Once a valid schedule has been determined, the binding of operations to func­
tional units and registers is done (line 15). Here, the same binding methods are ap­
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Algorithm 4: Mapping flow for WPPAs
Input : 1. Specification of the architecture (resource graph and allocation),

2. Algorithm in form of the RDG G = (V , E , D),
3. Space mapping Φ

Output: If possible: Local schedule (assembly program) for each processor
and interconnect reconfiguration

m = 0;1

foreach edge e ∈ E do2

if (de 6= 0) ∧ (Φde = 0) then3

m = m+ 1;4

Dr e u s e = Dr e u s e ∪ {de};5

end6

end7

if m > α(F SR) then8

// For the given Φ, the algorithm is not mappable. Retry with other mapping!
return false;9

end10

β = doScheduling ( );11

if !β then12

// No valid schedule exist.
return false;13

end14

doBinding ( );15

generateAssemblyCode ( );16

generateConfigCode ( );17

plied as when synthezising dedicated hardware accelerators. Remember that the in­
stance binding for the I/O ports of a processor is directly determined during schedul­
ing. Also, the allocation of feedback shift registers to variables is easily determined
within this method since the FSRs are not shared by multiple variables.

Afterwards (program line 16), from the internal schedule and the binding, the
assembly code for each processor can be generated. The cycle number (start time)
of an instruction word is directly given by the calculated schedule. The operation
type of an RDG node together with its resource binding defines the issue slot. Finally,
taking the operands (registers, FSRs, constants, I/O ports) into account, the assem­
bler instruction inclusive operands can be emitted. Furthermore, in dependence on
possible iteration and run­time dependent conditions, code for the parallel branch
unit is generated (examples follow in Section 5.4). For time­variant iteration depen­
dent conditions, similar to the hardware generation, it is assumed that appropriate
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control signals are generated by a global controller and propagated through the con­
trol network of the array. These signals are then evaluated by each branch unit of
a processor. In case of time­invariant iteration dependent conditions, different pro­
grams for groups or even single processors are generated (cf. processor classification
in Section 4.3.1).

Finally, in line 17 of the mapping algorithm, the reconfiguration code for the
interconnect structure and the length of input delay registers and FSRs be emitted.
This information is combined with the different programs according to the proces­
sor classification. Considering each processor and its surrounding interconnect as
a whole has the advantage that the multicast reconfiguration [KHKT06b] feature of
WPPAs can be employed. Thus, both, the size of the configuration bit stream and
the reconfiguration time are reduced.

4.5 Summary and Conclusions

In this chapter, related work in the area of high­level synthesis tools and embedded
processor arrays with the main emphasis on recent approaches has been presented
and discussed.

Afterwards, the entire design flow of the PARO synthesis tool, which has been
developed in the course of this thesis, has been presented in Section 4.2. PARO’s
uniqueness is the applicability to target different architectures that are classically tack­
led with totally different method, either high­level synthesis approaches or standard
compilation methods.

A systematic approach for the synthesis of dedicated hardware accelerators con­
sisting of several processor elements, interconnect, and control structures, has been
presented. Also, for the first time, a method has been briefly presented how to gener­
ate code for tightly­coupled, programmable processor arrays (WPPAs) from almost
the same allocation and scheduling information as for the generation of dedicated
processor arrays.

The unified design approach of the PARO synthesis tool might be easily adapted
to further array architectures, consisting of EPIC or VLIW processors. Moreover,
the back end of PARO could be retargeted to generate configuration code for coarse­
grained reconfigurable array architectures. For instance, in [HDT04a, HDT04b,
HDT06], we have adapted our methodology to target the PACT XPP64­A archi­
tecture [BEM+03], which is a high performance run­time reconfigurable processor
array.

Furthermore, the rich set of high­level transformations included in PARO might
also be used for code generation for multi­core architectures such as modern graphics
processors.
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The introduction of the theoretic foundations and their practical implemen­
tations (target code generation) allow to quantitatively evaluate the proposed ap­
proaches in the next chapter.
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5Chapter 5
Experiments and Evaluation

After the presentation of new scheduling techniques in Chapter 3 and the description
of the PARO design system in Chapter 4, several experimental results are obtained
by applying the new methods on different examples in this chapter.

In Section 5.1, the proposed sequentialization constraints are quantitatively com­
pared with an existing method. In Section 5.2, examples for predicated and condi­
tional execution are given. Scheduling with register constraints is discussed in Sec­
tion 5.3. Scheduling and code generation for WPPAs is demonstrated in Section 5.4.
Scheduling as well as synthesis results for a number of algorithms chosen from dif­
ferent benchmarks are presented in Section 5.5. A comparison of loop unrolling
with our proposed method of loop partitioning follows in Section 5.6. Finally, in
Section 5.7, a complex real world application stemming from the area of image pro­
cessing is presented.

5.1 Sequentialized Scheduling

In this section, we quantitatively compare the novel sequentialization approach, in­
troduced in Chapter 3, with the method presented by Teich, Thiele, and Zhang
in [TTZ96,TTZ97]. As comparison, we consider a one­level partitioning where the
iterations within the tile should be executed sequentially.

For a given loop matrix R, the sequentialization constraint presented in [TTZ96,
TTZ97] (named Method TTZ in the following) is defined as follows.
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The entries hi ,i of the above matrix are determined by decomposing the loop matrix
R in such a way that R=U H ′, where U is a unimodular matrix, the matrix H ′ is in
upper right triangular form, and h ′

i ,i
> 0 for all 1≤ i ≤ s .
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As repetition, our method (named Method Hannig in the following) presented in
Section 3.5.2 is briefly summarized. The sequentialization constraint is defined by
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where the coefficients h̄i , j for all 1≤ i ≤ n−1 and i < j ≤ n are calculated as follows.

h̄i , j = hi , j −

$
hi , j + li

hi ,i

%

hi ,i li =
σ det(R)−wi

wi

T = σW −1adj(R) σ =
det(R)

|det(R)|
W =










w1 0 . . . 0

0 w2
.. . ...

... .. . .. . 0
0 . . . 0 wn


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


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wi =
1

gi

n∏

j=1

g j ∀1≤ i ≤ n gk = gcd
∀l={1,2,...,n}

(rl ,k ) ∀k ∈ {i , j }

In the following, the two sequentialization constraints are constructed and compared
for six different parallelotopes as tiles or rather loop matrices R1, . . . , R6.

164



Sequentialized Scheduling

Example 1

Given loop matrix: R1 =

�

−3 3
3 6

�

Method TTZ:
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H ′
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��
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�

⇒ sequentialization constraint:

−Λs e q1
+Λs e q2

≥ 1 ∧ 10Λs e q1
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Example 2
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�

165



5. Experiments and Evaluation

⇒ sequentialization constraint:
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�

4 0
0 10

�

σR3
= 1
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TR3
=

�

1 0
0 1

�

T −1
R3
=

�

1 0
0 1

�

HR3
= TR3

UR3
⇔

�

1 0
0 1

�

=

�

1 0
0 1

��

1 0
0 1

�

⇒ S ′
R3
=

�

1 0
0 1

�

~S ′
R3
=

�

1 −9
0 1

�

⇒ ~SR3
= T −1

R3

~S ′
R3
=

�

1 −9
0 1

�

⇒ sequentialization constraint:

Λs e q1
≥ 1 ∧ −9Λs e q1

+Λs e q2
≥ 1

Example 4

Given loop matrix: R4 =






4 0 0
0 4 0
0 0 4






Method TTZ:

R4 =UR4
H ′

R4
=






1 0 0
0 1 0
0 0 1











4 0 0
0 4 0
0 0 4






⇒ R4






1/4 −1 −1
0 1/4 −1
0 0 1/4




=






1 −4 −4
0 1 −4
0 0 1






⇒ sequentialization constraint:

Λs e q1
≥ 1 ∧ −4Λs e q1

+Λs e q2
≥ 0 ∧ −4Λs e q1

− 4Λs e q2
+Λs e q3

≥ 0

Method Hannig:

gR4
=






4
4
4




 wR4

=






16
16
16






det(R4) = 64 adj(R4) =






16 0 0
0 16 0
0 0 16




 σR4

= 1

TR4
=






1 0 0
0 1 0
0 0 1




 T −1

R4
=






1 0 0
0 1 0
0 0 1





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HR4
= TR4

UR4
⇔






1 0 0
0 1 0
0 0 1




=






1 0 0
0 1 0
0 0 1











1 0 0
0 1 0
0 0 1






⇒ S ′
R4
=






1 0 0
0 1 0
0 0 1






~S ′
R4
=






1 −3 −3
0 1 −3
0 0 1




 ⇒ ~SR4

= T −1
R4

~S ′
R4
=






1 −3 −3
0 1 −3
0 0 1






⇒ sequentialization constraint:

Λs e q1
≥ 1 ∧ −3Λs e q1

+Λs e q2
≥ 1 ∧ −3Λs e q1

− 3Λs e q2
+Λs e q3

≥ 1

Example 5

Given loop matrix: R5 =






4 0 0
0 7 0
0 0 5






Method TTZ:

R5 =UR5
H ′

R5
=






1 0 0
0 1 0
0 0 1











4 0 0
0 7 0
0 0 5






⇒ R5






1/4 −1 −1
0 1/7 −1
0 0 1/5




=






1 −4 −4
0 1 −7
0 0 1






⇒ sequentialization constraint:

Λs e q1
≥ 1 ∧ −4Λs e q1

+Λs e q2
≥ 0 ∧ −4Λs e q1

− 7Λs e q2
+Λs e q3

≥ 0

Method Hannig:

gR5
=






4
7
5




 wR5

=






35
20
28






det(R5) = 140 adj(R5) =






35 0 0
0 20 0
0 0 28




 σR5

= 1

TR5
=






1 0 0
0 1 0
0 0 1




 T −1

R5
=






1 0 0
0 1 0
0 0 1





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HR5
= TR5

UR5
⇔






1 0 0
0 1 0
0 0 1




=






1 0 0
0 1 0
0 0 1











1 0 0
0 1 0
0 0 1






⇒ S ′
R5
=






1 0 0
0 1 0
0 0 1






~S ′
R5
=






1 −3 −3
0 1 −6
0 0 1




 ⇒ ~SR5

= T −1
R5

~S ′
R5
=






1 −3 −3
0 1 −6
0 0 1






⇒ sequentialization constraint:

Λs e q1
≥ 1 ∧ −3Λs e q1

+Λs e q2
≥ 1 ∧ −3Λs e q1

− 6Λs e q2
+Λs e q3

≥ 1

Example 6

Given loop matrix: R6 =






4 1 5
4 7 10
4 10 5






Method TTZ:

R6 =UR6
H ′

R6
=






1 0 0
1 2 −1
1 3 −2











4 1 5
0 3 10
0 0 15






⇒ R6






1/4 −1 −1
0 1/3 −1
0 0 1/15




=






1 −11/3 −14/3
1 −5/3 −31/3
1 −2/3 −41/3






⇒ sequentialization constraint:

Λs e q1
+Λs e q2

+Λs e q3
≥ 1 ∧ −11Λs e q1

− 5Λs e q2
− 2Λs e q3

≥ 0

∧ −14Λs e q1
− 31Λs e q2

− 41Λs e q3
≥ 0

Method Hannig:

gR6
=






4
1
5




 wR6

=






5
20
4






det(R6) =−180 adj(R6) =






−65 45 −25
20 0 −20
12 −36 24




 σR6

=−1
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TR6
=






13 −9 5
−1 0 1
−3 9 −6




 T −1

R6
=

1

9






1 1 1
1 7 2
1 10 1






HR6
= TR6

UR6
⇔






9 6 5
0 3 1
0 0 3




=






13 −9 5
−1 0 1
−3 9 −6











1 1 1
1 3 2
1 4 2






⇒ S ′
R6
=






9 0 0
0 3 0
0 0 3






~S ′
R6
=






9 −30 −31
0 3 −8
0 0 3




 ⇒ ~SR6

= T −1
R6

~S ′
R6
=






1 −3 −4
1 −1 −9
1 0 −12






⇒ sequentialization constraint:

Λs e q1
+Λs e q2

+Λs e q3
≥ 1 ∧ −3Λs e q1

−Λs e q2
≥ 1 ∧ −4Λs e q1

− 9Λs e q2
− 12Λs e q3

≥ 1

Comparison

In order to compare the two methods, a schedule Λs e q is determined only for the
sequentialization constraint. That means, no further resource or precedence con­
straints are considered. Then, each iteration point within the given tile, specified by
a loop matrix Ri , can be executed in one time step. Thus, the number of iteration
points within a tile defines the minimal latency Lmi n = |det(Ri )|. The tightness T is a
measure of how close the derived linear schedule is to the optimal free schedule. For
this, the minimal latency Lmi n is set in proportion to the latency L, associated to a
schedule vector Λs e q, T = Lmi n/L. In Table 5.1, the results for the afore determined

Table 5.1: Comparison of sequentialization methods.

Loop Method TTZ Method Hannig Difference

matrix Λs e q L T Λs e q L T abs. rel.

R1 (3 4) 33 82% (3 4) 33 82% 0 0%
R2 (3 ­8) 28 71% (3 ­8) 28 71% 0 0%
R3 (1 10) 40 100% (1 10) 49 100% 0 0%
R4 (1 4 20) 76 84% (1 4 16) 64 100% 12 19%
R5 (1 5 40) 194 72% (1 4 28) 140 100% 54 39%
R6 (­17 50 ­32) 254 71% (­16 47 ­30) 240 75% 14 6%

sequentialization constraints are presented. For both methods (TTZ and Hannig),
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the optimal linear schedule vector Λs e q , the corresponding latency L, and the tight­
ness T are given. In the last two columns, the absolute difference of the latency, as
well as the relative difference between the two methods are given. For the first three
considered loop matrices, which are all two­dimensional, both methods result in the
same schedule vector. Only for the rectangular tile (R3), a tight schedule is obtained.
In case of three­dimensional tiles the situation is different. Here, our new method is
better in all cases. Remarkably different is the situation for the cube as tile (R4) and
the cuboid (R5), where the new sequentialization constraint leads to an improvement
of 19% and 39%, respectively.

Based on the construction of our method, one can conclude that for any n­
dimensional orthotope, a tight linear schedule can be obtained.

5.2 Predicated and Conditional Execution

In this section, several programs with run­time dependent conditions are presented
and subsequently solved by application of the scheduling method presented in Sec­
tion 3.6. By these examples, some special cases of nested conditions are discussed.
For the sake of compactness and readability, the examples are constructed and fictive.

Example

The code fragment is given as pseudo code as well as PAULA program. The pseudo
code contains two nested if­then­else statements. The number of variables that is
influenced by these statements is six, which can be easily verified by the PAULA
program.
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Pseudo code

C1[i] = (a[i]> 8);

C2[i] = (b [i]> 0);

C3[i] = (a[i]> 5);

IF (C1[i])
b [i] = a[i]+ 2;

IF (C2[i])
c[i] = a[i]+ 4;

ELSE
c[i] = a[i] ∗ 5;

ENDIF
ELSE

b [i] = a[i] ∗ 3;

c[i] = a[i] ∗ 6;

ENDIF
IF (C3[i])

d[i] = a[i] ∗ 2;

IF (C1[i])
e[i] = a[i]+ 4;

ELSE
e[i] = a[i] ∗ 5;

ENDIF
ELSE

d[i] = a[i] ∗ 3;

e[i] = a[i] ∗ 6;

ENDIF

PAULA program

S0: C1[i] = (a[i]>8);

S1: C2[i] = (b[i]>0);

S2: C3[i] = (a[i]>5);

S3: b[i] = ifrt(C1[i],b1[i],b0[i]);

S4: b1[i] = a[i] + 2;

S5: b0[i] = a[i] * 3;

S6: c[i] = ifrt(C1[i],c1[i],c0[i]);

S7: c1[i] = ifrt(C2[i],c11[i],c10[i]);

S8: c11[i] = a[i] + 4;

S9: c10[i] = a[i] * 5;

S10: c0[i] = a[i] * 6;

S11: d[i] = ifrt(C3[i],d1[i],d0[i]);

S12: d1[i] = a[i] * 2;

S13: d0[i] = a[i] * 3;

S14: e[i] = ifrt(C3[i],e1[i],e0[i]);

S15: e1[i] = ifrt(C1[i],e11[i],e10[i]);

S16: e11[i] = a[i] + 4;

S17: e10[i] = a[i] * 5;

S18: e0[i] = a[i] * 6;

From the given program, a reduced dependence graph is generated according to the
extended Definition 2.7. Two versions are possible: One is dedicated for predicated
execution and the other for conditional execution. The RDG for predicated execution
is depicted in Figure 5.1. Here, the edges denote the precedence of the nodes. Apart
from that, if enough resource are available, the nodes might be executed in parallel.
For instance, consider the nodes of statement S4, S5, and S0. All three operations
(multiplication in S5, addition in S4, comparison in S0) might be executed in parallel
since they are independent of each other. The scheduling method is eager to compute
both branches in parallel. Afterwards, just the right result has to be selected by the
merge node (S3). A corresponding schedule with an iteration interval of P = 4 and
an allocation of two adders, two multipliers (two cycles latency with a pipeline rate
of one), and two comparators, is shown in the following.
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5 4 3 2 8 6 a 6 4 5 3 2 5

S9 : c10 ∗ S8 : c11 + S5 : b0 ∗ S4 : b1 + S0 : C1 > S10 : c0 ∗ S18 : e0 ∗ S16 : e11 + S17 : e10 ∗ S13 : d0 ∗ S12 : d1 ∗ S2 : C3 >

0 S3 : b S15 : e1 S11 : d

S1 : C2 > S14 : e

S7 : c1

S6 : c

Figure 5.1: Reduced dependence graph for predicated execution.

0 1 2 3 4 5 t

MUL1 S10 S18 S12 S10

MUL0 S5 S17 S13 S9 S5 S17

CMP1 S2 S2

CMP0 S0 S1 S0

ADD1 S8 S8

ADD0 S4 S16 S4 S16

P

Figure 5.2: Gantt chart of the scheduled algorithm according to the RDG in Fig­
ure 5.1. Note, multiplications have two cycles latency but can start in each cycle a
new operation. Thus, the bars for the multipliers may overlap each other. For in­
stance, statement S5 executed on multiplier MUL0 ends its execution not already at
time step one but at two.

It should be mentioned that an iteration interval of four can also be obtained with
only one adder and comparator.

The other possibility is the conditional execution shown in Figure 5.3. For this,
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8 a 5

3 2

S0 : C1 >

6 4 5 6
3

S2 : C3 >

2

S5 : b0 ∗ S4 : b1 + S10 : c0 ∗ S16 : e11 + S17 : e10 ∗ S18 : e0 ∗ S13 : d0 ∗ S12 : d1 ∗

0 S3 : b S15 : e1 S11 : d

4 S1 : C2 > 5 S14 : e

S8 : c11 + S9 : c10 ∗

S7 : c1

S6 : c

Figure 5.3: Reduced dependence graph for conditional execution.

serialization edges are added to the RDG (green edges) in order that first a compari­
son is evaluated and then in dependence on it, the right branch is executed. Besides
the serialization edges, a corresponding AND­XOR­tree is created, which is shown
in Figure 5.4.
In the AXT, it can be seen that the nesting of the conditions depends on the pro­
gram. Particular interesting is that conditional C1 is used in different branches and
at different levels. The derived schedule is visualized as a Gantt chart in Figure 5.5.

Thanks to conditional execution, the iteration interval has been reduced to P = 3.
The example demonstrates that even operations from different iterations can mutu­
ally exclusive share the same resource at the same time. This is the case for statements
S5 and S9, which are executed on multiplier MUL0, and is denoted by the color gra­
dient in the Gantt chart. Statement S5 belongs to the actual iteration and S9 to the
previous one.
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⊙

⊕C1

⊙1

S4 S7
⊕C2

⊙1

S8

⊙0

S9

⊙0

S5 S10

S0 S1 S2 S3 S6
⊕C3

⊙1

S12 S15
⊕C1

⊙1

S16

⊙0

S17

⊙0

S13 S18

S11 S14

Figure 5.4: AND­XOR­tree corresponding to the reduced dependence graph shown
in Figure 5.3.

0 1 2 3 4 5 6 t

MUL1 S17 S10 S17 S10 S17

MUL0 S12|S13 S9|S5 S18 S12|S13 S9|S5 S18 S12|S13

CMP1 S2 S2 S2

CMP0 S0 S1 S0 S1 S0

ADD1 S8 S8

ADD0 S4 S16 S4 S16

P

Figure 5.5: Gantt chart of the scheduled algorithm according to the RDG in Fig­
ure 5.3 and the AXT in Figure 5.4.

5.3 Scheduling with Register Constraints

Scheduling with register constraints can become challenging if the lifetime of a vari­
able increases. This might be the case if, due to limited resources, the execution has
to be serialized and several longer lifetimes exist, which can be traded for the shorter
ones of other variables. Such a situation, with large scheduling freedom, is given
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by a dependence graph in form of a regular tree structure. Thus, an example for
demonstration of the proposed scheduling method with register constraints (cf. Sec­
tion 3.8.2) is given by considering an adder tree that sums up 16 values. That means,
15 add operations are necessary. Of course, this example should also be scheduled to
achieve maximal throughput (minimal iteration interval). Simultaneously, also the
local latency Ll is minimized.

Table 5.2: Local latency Ll and iteration interval P for different adder and register
allocations.

Number of Number of Number of Number of

adders registers P Ll adders registers P Ll

16 16 1 4 3 8 5 7
16 8 2 5 3 7 5 7
8 16 2 5 3 6 5 7
8 8 2 5 3 5 5 8
8 7 3 5 3 4 5 8
8 6 3 5 2 8 8 8
8 5 4 6 2 7 8 8
8 4 5 6 2 6 8 8
7 8 3 5 2 5 8 9
6 8 3 5 2 4 8 10
5 8 3 6 1 8 15 15
4 8 4 6 1 7 15 15
4 7 4 6 1 6 15 15
4 6 4 6 1 5 15 15
4 5 4 7 1 4 15 15
4 4 5 7

In Table 5.2, the results for different numbers of adders and registers are shown. One
can see that adders might be traded for registers. Consider, for instance, an iteration
interval of length five. Then, the allocations (no. of adders, no. of registers), (8,4),
(4,4), (3,6), and (3,4) lead to the same iteration interval and thus to an interesting
multi­objective exploration problem. Because, if only the cost will be minimized for
a given iteration interval, the overall latency might be suboptimal.

5.4 Scheduling for WPPA

In Section 3.8 a scheduling method and in Section 4.4 a design flow (code genera­
tion) for weakly­programmable processor arrays have been proposed. For illustration,
these techniques are applied to several examples in this section.
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As first example, the following simple program consisting of three statements is
considered. The program has to compute two additions and one multiplication.

par (i>=1 and i<=N and j>=1 and j<=N)

{ S1: a[i,j] = i0[i,j] + i1[i,j];

S2: b[i,j] = a[i,j] * 7;

S3: c[i,j] = a[i,j] + b[i,j];

}

Variables i0 and i1 are inputs and variable c is an output as denoted by the different
colors of the nodes in the corresponding reduced dependence graph, shown in the
following.

i0 i1

7 S1 : a +

S2 : b ∗

S3 : c +

The program does not contain any loop­carried dependencies, thus the global alloca­
tion plays a secondary role. It is assumed that both additions and the multiplication
are single­cycle operations. Scheduling is studied for the following set of resource
allocations.

Allocation α(ADD) α(REG) α(MUL)

A1 2 3 1
A2 2 2 1
A3 1 3 1
A4 1 2 1

As result, the following schedules have been determined using MIP techniques as
proposed in Section 3.8.
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Gantt chart for allocation A1

0 1 2 3 4 t

REG3 S1 S1 S1

REG2 S2 S2 S2 S2 S2

REG1 S1 S1 S1

MUL S2 S2 S2 S2 S2

ADD2 S3 S3 S3 S3 S3

ADD1 S1 S1 S1 S1 S1

P

Gantt chart for allocation A2

0 1 2 3 4 t

REG2 S2 S2 S2

REG1 S1 S1 S1

MUL S2 S2

ADD2 S3 S3 S3

ADD1 S1 S1 S1

P

Gantt chart for allocation A3

0 1 2 3 4 t

REG3 S1 S1

REG2 S2 S2

REG1 S1

MUL S2 S2 S2

ADD S1 S3 S1 S3 S1

P

Gantt chart for allocation A4

0 1 2 3 4 t

REG2 S2

REG1 S1 S1

MUL S2 S2

ADD S1 S3 S1

P

As expected, the first allocation (A1) leads to the best throughput (iteration interval of
one). All resources, functional units as well as the three registers, are 100% utilized.
In the time interval drawn, from zero to five, resource occupancies from overall
seven iterations are shown (denoted by the different colors). As can be seen from the
program and the RDG, an execution in the order of S1 ≺ S2 ≺ S3 has to be satisfied
for each iteration. Considering the Gantt chart of allocation A1 and the first iteration
(shown in blue), according to the execution order, the computation starts with S1 in
cycle zero, whereas the result of the addition is written to register one at the end of
the cycle (time step one). Since the register occupancy is caused by statement S1, it
is written in the corresponding bar of the chart. The value of variable a is needed
in statement S2 and S3. Thus, the lifetime of variable a is two cycles. Since the next
iteration (shown in green) starts already at cycle one, the result of statement S1 has
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to be written to register three because register one is still occupied by the previous
overlapping iteration.

The Gantt charts for allocation A2 and A3 are interesting in the sense of that they
have the same throughput (iteration interval of P = 2). That means, one adder can
be traded for one register.

On the first glance at the schedule of allocation A2, one could think that one
adder of the two is dispensable since both are only utilized to 50%. But this appear­
ance is deceiving as the schedule for allocation A4 demonstrates, which only leads to
an iteration interval of P = 3 due to the limited number of registers.

From the determined schedules, a corresponding VLIW program can be easily
generated. Here, it must be pointed out that the program length does not directly
correspond to the iteration interval. In order to determine the program length, two
congruent allocation patterns with a minimal distance in time have to be considered.
This search method can be interpreted as an autocorrelation. As an example, consider
the Gantt chart of allocation A1. Although the blue and green allocation patterns are
not congruent, the blue and yellow patterns are. Thus, the VLIW program length is
two.

VLIW programs in accordance to the different allocations are shown in the fol­
lowing. The first column of a program denotes the line number, which is followed
by the number of instructions that are executed in parallel within this cycle. The last
column contains information about with which program line to continue in the next
cycle.

WPPA program for allocation A1

Line ADD1 ADD2 MUL BRANCH

0 ADD R1,IN1,IN2 ADD OUT1,R1,R2 MUL R2,R3,#7 NEXT

1 ADD R3,IN1,IN2 ADD OUT1,R3,R2 MUL R2,R1,#7 JMP 0

WPPA program for allocation A2

Line ADD1 ADD2 MUL BRANCH

0 ADD R1,IN1,IN2 ADD OUT1,R1,R2 NOP NEXT

1 NOP NOP MUL R2,R1,#7 JMP 0

WPPA program for allocation A3

Line ADD MUL BRANCH

0 ADD R1,IN1,IN2 MUL R2,R1,#7 NEXT

1 ADD OUT1,R3,R2 NOP NEXT
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2 ADD R3,IN1,IN2 MUL R2,R1,#7 NEXT

3 ADD OUT1,R1,R2 NOP JMP 0

WPPA program for allocation A4

Line ADD MUL BRANCH

0 ADD R1,IN1,IN2 NOP NEXT

1 NOP MUL R2,R1,#7 NEXT

2 ADD OUT1,R1,R2 NOP JMP 0

On closer inspection of the four VLIW programs, allocations A2 and A3 are of spe­
cial interest once again since both have the same throughput but the program lengths
differ by a factor of two. A study of the cost associated to the different allocations
would shed light on the most appropriate allocation. However, without exact estima­
tion of the cost, it is hard to decide which of the two allocations, A2 or A3, is better.
Regarding the area cost of an adder and a register, they are of similar size. Because
of the possibility that all functional units can simultaneously access the register file,
its size and the size of the multiplexer structures are increased substantially. In this
context, allocation A3 might be better. But from the point of instruction memory
size, allocation A2 would be better.

As second example, a median filter is considered. This filter is commonly used
in image pre­processing for noise reduction. It is especially useful to reduce salt
and pepper noise and speckle noise. We consider a 1× 3 window that is sliding in
horizontal direction over the processed image. The values in the window are sorted
in numerical order. Then, the value in the center of the window, the so­called median
value, is selected as output value. For example, let a window of values (4, 13, 6) be
given. Sorting the window results in (4, 6, 13), and thus the median value is 6.
Furthermore, the image size is full HDTV resolution with 1920× 1080 pixels. The
borders of the image should be treated by repeating the edge values, which results
in an iteration space that is increased by one in horizontal direction. A first version
of the median filter is given by the following program, where pi denotes the input
image and po the output image.

par (x >= 0 and x < 1921 and y >= 0 and y < 1080)

{ p[x,y] = pi[x,y] if (x<1920);

m[x,y] = 0 if (x==0);

m[x,y] = median(p[x,y],p[x-1,y],p[x-1,y]) if (x==1);

m[x,y] = median(p[x,y],p[x-1,y],p[x-2,y]) if (x>1 and x<1920);

m[x,y] = median(p[x-2,y],p[x-1,y],p[x-1,y]) if (x==1920);

po[x-1,y] = m[x,y] if (x>=1);
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}

The median function for the borders (x = 1 and x = 1921) is trivial, thus we obtain.

par (x >= 0 and x < 1921 and y >= 0 and y < 1080)

{ p[x,y] = pi[x,y] if (x<1920);

m[x,y] = 0 if (x==0);

m[x,y] = p[x-1,y] if (x==1);

m[x,y] = median(p[x,y],p[x-1,y],p[x-2,y]) if (x>1 and x<1920);

m[x,y] = p[x-1,y] if (x==1920);

po[x-1,y] = m[x,y] if (x>=1);

}

The filter should be mapped onto a 1× 4 WPPA. Thus, the algorithm is partitioned
into four stripes resulting in the following program.

par (x>=0 and x<481 and y>=0 and y<1080 and z>=0 and z<=3)

{ p[x,y,z] = pi[x,y,z] if (x<480);

m[x,y,z] = 0 if (x==0);

m[x,y,z] = p[x-1,y,z] if (x==1 and z==0);

m[x,y,z] = p[x+479,y,z-1] if (x==1 and z>0);

m[x,y,z] = median(p[x,y,z],p[x-1,y,z],p[x-2,y,z])

if (x>1 and x<480);

m[x,y,z] = p[x-1,y,z] if (x==480);

po[x-1,y,z] = m[x,y,z] if (x>=1);

}

Subsequently, the median functions in the algorithm are replaced by compare oper­
ations. The median m = median(a,b,c) of three variables a, b, and c can be
computed as follows.

C1 = (a>b);

C2 = (c>d);

C3 = (f>e);

d = ifrt(C1, a, b);

e = ifrt(C1, b, a);

f = ifrt(C2, d, c);

m = ifrt(C3, f, e);

The above substitution leads to:
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par (x>=0 and x<481 and y>=0 and y<1080 and z>=0 and z<=3)

{ S0: p[x,y,z] = pi[x,y,z] if (x<480);

S1: m[x,y,z] = 0 if (x==0);

S2: m[x,y,z] = p[x-1,y,z] if (x==1 and z==0);

S3: m[x,y,z] = p[x+479,y,z-1] if (x==1 and z>0);

S4: C1[x,y,z]= (p[x,y,z]>p[x-1,y,z]) if (x>1 and x<480);

S5: C2[x,y,z]= (p[x-2,y,z]>d[x,y,z]) if (x>1 and x<480);

S6: C3[x,y,z]= (f[x,y,z]>e[x,y,z]) if (x>1 and x<480);

S7: d[x,y,z] = ifrt(C1[x,y,z],p[x,y,z],p[x-1,y,z])

if (x>1 and x<480);

S8: e[x,y,z] = ifrt(C1[x,y,z],p[x-1,y,z],p[x,y,z])

if (x>1 and x<480);

S9: f[x,y,z] = ifrt(C2[x,y,z],d[x,y,z],p[x-2,y,z])

if (x>1 and x<480);

S10: m[x,y,z] = ifrt(C3[x,y,z],f[x,y,z],e[x,y,z])

if (x>1 and x<480);

S11: m[x,y,z] = p[x-1,y,z] if (x==480);

S12: po[x-1,y,z] = m[x,y,z] if (x>=1);

}

The variables with data reuse p[x-1,y,z] and p[x-2,y,z] are replaced by in­
termediate variables. Furthermore, all iteration dependent conditions that do not
access I/O ports or feedback shift registers (FSR) can be removed. Also, statement S1
can be removed since it covers only the case x = 0 but the output port is only written
for x ≥ 1.

par (x>=0 and x<481 and y>=0 and y<1080 and z>=0 and z<=3)

{ S0: p[x,y,z] = pi[x,y,z] if (x < 480); // read from input port

S1: p1[x,y,z]= p[x,y,z] if (x < 480); // write to FSR1

S2: p2[x,y,z]= p[x,y,z] if (x < 480); // write to FSR2

S3: p3[x,y,z]= p1[x-1,y,z] if (x >= 1); // read from FSR1

S4: p4[x,y,z]= p2[x-2,y,z] if (x >= 2); // read from FSR2

S5: m[x,y,z] = p3[x,y,z] if (x == 1 and z == 0);

S6: m[x,y,z] = p[x+479,y,z-1] if (x == 1 and z >= 1);

S7: C1[x,y,z]= p[x,y,z] > p3[x,y,z];

S8: C2[x,y,z]= p4[x,y,z] > d[x,y,z];

S9: C3[x,y,z]= f[x,y,z] > e[x,y,z];

S10: d[x,y,z] = ifrt(C1[x,y,z],p[x,y,z],p3[x,y,z]);

S11: e[x,y,z] = ifrt(C1[x,y,z],p3[x,y,z],p[x,y,z]);
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S12: f[x,y,z] = ifrt(C2[x,y,z],d[x,y,z],p4[x,y,z]);

S13: m[x,y,z] = ifrt(C3[x,y,z],f[x,y,z],e[x,y,z])

if (x >= 2 and x < 480);

S14: m[x,y,z] = p3[x,y,z] if (x == 480);

S15: po[x-1, y, z] = m[x,y,z] if (x >= 1); // write to output port

}

A corresponding VLIW code fragment obtained after scheduling is given in the fol­
lowing. The line below each VLIW instruction is a comment denoting to which
statement the operation belongs. In case of the branch unit, the comment denotes
two parts separated by the symbol ’|’. The left part denotes the actual condition.
The right part denotes the control signals to be evaluated and in dependence on the
evaluation, the corresponding branch targets.
Line ADD0 ADD1 BRANCH

0 NOP NOP IF IC0,IC1 JMP 1, 2, 3, -

− − −− | IC0= (x < 480), IC1= (x ≥ 1)

1 MOV RD2,IN1 MOV RD3,RF1 IF IC0 JMP 4, 5

S0 S3 1≤ x < 480 | IC0= (x ≥ 1)

2 MOV RD2,IN1 NOP IF IC0 JMP 4, 5

S0 − x < 1 | IC0= (x ≥ 1)

3 NOP MOV RD3,RF1 IF IC0 JMP 4, 5

− S3 x ≥ 480 | IC0= (x ≥ 1)

4 CMP RC1,RD2,RD3 MOV OUT1,RD5 IF IC0,RC2 JMP 6, 7, 8, 9

S7 S15 x ≥ 1 | IC0= (x < 480), (RC 2)

5 CMP RC1,RD2,RD3 NOP IF IC0,RC2 JMP 6, 7, 8, 9

S7 − x < 1 | IC0= (x < 480), (RC 2)

6 MOV RF2,RD2 MOV RD1,RD6 IF IC0,RC1 JMP 10,11,12,13

S2 S12 x < 480, RC 2 | IC0= (x ≥ 2), (RC 1)

...

For explanation, in the first line of the VLIW program, only the branch unit is active
and decides which part of the image is actually considered. Depending on the two
control signals IC0 and IC1, generated by a global controller, the program flow is
chosen. For instance, if x < 1, the program continues in line 2 with statement S0 of
the algorithm, where input IN1 is read to register RD2. Simultaneously, the branch
unit checks IC0, which denotes whether x is greater or equal to one (x ≥ 1) in the
next iteration. According to this evaluation the program continues with line 4 or
5. In both cases statement S7 is executed, where the values of RD2 (variable p) and
RD3 (variable p3) are compared and the result is written to control register RC1,
which can be evaluated by the branch unit in the next instruction, as for instance, in
line 6.
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5.5 High­Level Synthesis for FPGA Targets

Several algorithms from various application domains, some of which are taken from
the well­known MediaBench suite [LPM97], have been synthesized. In this context,
we profiled the JPEG and MPEG2 algorithms and identified some of the most com­
putationally intensive loop kernels. For these and some further algorithms, charac­
teristics, such as the size of the processor array, the number of nodes and edges of the
reduced dependence graph, and if an algorithm has run­time (RT) or iteration (IT)
dependent conditions, are summarized in Table 5.3. For most of these examples, the
resource­constrained scheduling was performed within a split of a second to a second
depending on how many MIP instances (bisection method to find the optimal itera­
tion interval, test of several loop vector permutations in case of partitioning) had to
be generated. All algorithms were implemented using 16­bit integer or fixed point
arithmetics and synthesized using the Xilinx ISE 6.3i toolchain targeting a Virtex­II
8000 FPGA. The synthesis results are shown in Table 5.4.

For each example, the cost in terms of FPGA primitives, the maximum achiev­
able clock frequency, the total execution time for the algorithm in clock cycles, and
the average number of clock cycles between the availability of two successive out­
put instances (for example samples or pixels) is given. The latter is the inverse of
the throughput, that is, a smaller number denotes a higher throughput. The initial
latency does not affect the throughput. Note that an output interval less than 1
denotes that more than one piece of output data is produced per clock cycle. The
Gaussian filter was partitioned, so that implementation costs remain mostly con­
stant for larger image sizes. In this case of course, the latency raises. For the FIR
filter, we used partitioning to trade throughput and cost for constant latency. The
projected implementation is fast but very expensive, whereas partitioning allows for
a fine­grained design space exploration. The results for the matrix multiplication
benchmark are similar but partitioning was applied in such a way, that the total
execution time could also be selected according to the user’s requirements.

Generally, the maximum achievable clock speed is lower for partitioned imple­
mentations. This is caused by the more complex control logic. Although global
control signals are propagated efficiently through the array, the local controller inside
each PE is currently a pure combinational circuit. Here, the performance can be
increased, by applying additional pipelining.

In all experiments, the HDL synthesis done by PARO took only a few seconds for
each example, whereas the subsequent logic synthesis and place­and­route performed
by the tools of the FPGA vendor required several minutes. The time for performing
the place­and­route could be reduced by employing hard macro generation for each
processor type [Bed04].
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Table 5.3: Characteristics of the considered algorithms.

No. of No. of RDG Conditions

Algorithm Abbrv. PEs nodes / edges RT / IT

Edge Detection
– 100×100 image, sequential ED1 1 15 / 21 yes / yes
– 100×100 image, partitioned ED2 1×4 31 / 44 yes / yes
– 1000×1000 image, sequential ED3 1 15 / 21 yes / yes
– 1000×1000 image, partitioned ED4 1×4 31 / 44 yes / yes
Gaussian Filtering
– 100×100 image, 3×3 mask GAUSS1 3×3 25 / 65 no / yes
– 1000×1000 image, 3×3 mask GAUSS2 3×3 25 / 65 no / yes
– 2000×2000 image, 3×3 mask GAUSS3 3×3 25 / 65 no / yes
– 1000×1000 image, 5×5 mask GAUSS4 5×5 25 / 65 no / yes
– 2000×2000 image, 5×5 mask GAUSS5 5×5 25 / 65 no / yes
FIR Filter
– 64 Taps, sequential FIR1 1 19 / 36 no / yes
– 64 Taps, partitioned FIR2 1×4 30 / 109 no / yes
– 64 Taps, partitioned FIR3 1×8 30 / 109 no / yes
– 64 Taps, projected FIR4 1×64 19 / 36 no / yes
Matrix Multiplication
– 6×6 matrix size, sequential MM1 1 16 / 28 no / yes
– 6×6 matrix size, partitioned MM2 2×2 22 / 59 no / yes
– 6×6 matrix size, projected MM3 6×6 16 / 28 no / yes
– 100×100 matrix size, partitioned MM4 2×2 22 / 59 no / yes
Discrete Cosine Transformation DCT 2 176 / 168 no / no
Elliptical Wave Digital Filter EWDF 1 80 / 104 no / no
Partial Differential Equation Solver PDE 1 29 / 44 no / yes
MPEG2 Quantisizer QUANT 1 21 / 25 yes / no
JPEG Loop 1 JPEG1 1 21 / 31 yes / yes
JPEG Loop 2 JPEG2 1 17 / 21 yes / no

In order to evaluate the scalability of the scheduler, the considered discrete cosine
transformation (DCT) was fully unrolled and factorized, which led to an RDG with
9 244 nodes and 9 180 edges. The number of available multipliers was restricted to
24, whereas unlimited adders/subtracters were assumed. Solving the MIP took 10.5
minutes for the minimum possible iteration interval of 18 cycles.
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Table 5.4: Synthesis results.

Max. Exec. Avg. output

No. of No. of No. of No. of Clock time interval

Algorithm LUTs FFs MULTs BRAMs (MHz) (cycles) (cycles)

ED1 475 324 0 4 146 3.0 · 104 3
ED2 2962 1455 0 4 143 7.7 · 103 3
ED3 508 344 0 20 148 3.0 · 106 3
ED4 2997 1913 0 44 120 7.5 · 105 3
GAUSS1 655 1439 9 2 171 1.0 · 104 1
GAUSS2 683 1463 9 2 171 1.0 · 106 1
GAUSS3 696 1472 9 4 169 4.0 · 106 1
GAUSS4 1538 3909 25 4 171 1.0 · 106 1
GAUSS5 1555 3922 25 8 169 4.0 · 106 1
FIR1 130 106 1 0 162 68 64
FIR2 773 834 4 0 125 71 16
FIR3 1915 1014 8 0 132 71 8
FIR4 5782 9089 64 0 167 68 1
MM1 204 157 1 0 131 250 6
MM2 829 795 4 0 115 72 1.5
MM3 1888 4067 36 0 166 20 0.28
MM4 1736 913 4 505 97 2.6 · 105 3614
DCT 1754 1152 8 1 130 94 0.65
EWDF 1169 624 1 0 94 2.5 · 105 1
PDE 619 502 1 0 128 1.2 · 105 (1 result)
QUANT 637 1190 1 0 141 222 2.95
JPEG1 82 79 0 0 224 63 1
JPEG2 570 1139 0 0 158 126 1

5.6 Loop Unrolling versus Loop Partitioning

In this section, our proposed parallelization approach (loop partitioning) is compared
with loop unrolling, which is commonly used in order to increase the throughput.
Figure 5.6(a) shows the iteration space with omitted data dependencies of a 4­tap
FIR filter, which is used to illustrate the fundamental difference between the two
approaches. The pseudo code of an N ­tap FIR filter is given in Figure 5.7.
Figure 5.6(b) shows the loop unrolling approach, where the innermost loop is com­
pletely unrolled and mapped onto a processor element (PE) with 4 MUL and ADD
units. In addition to full loop unrolling, one can partially unroll the loop nest for
an iteration variable. The unroll factor u denotes how often the loop body is dupli­
cated. In the algorithm shown in Figure 5.8, the iteration variable j of the N ­tap
FIR filter is unrolled by a factor of 2.
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Figure 5.6: In (a), the iteration space of a loop program is sketched. In (b), the syn­
thesis problem in the case of a partially unrolled loop is shown. In (c), the synthesis
problem for the partitioned loop program is depicted.

FORALL (i >= 0 and i <= T-1) // T: number of input samples

{ FORALL (j >= 0 and j <= N-1) // N: number of filter taps

{ IF (i==0) THEN a[i,j] = a_in[j]; // Read filter coefficient

ELSE a[i,j] = a[i-1,j];

IF (j==0) THEN

{ u[i,j] = u_in[i]; // Read input sample

y[i,j] = a[i,j] * u[i,j];

}

ELSE

{ y[i,j] = y[i,j-1] + a[i,j] * u[i,j];

IF (i==0) THEN u[i,j] = 0;

ELSE u[i,j] = u[i-1,j-1]; // Enables data reuse

}

IF (j == N-1) y_out[i] = y[i,j]; // Write output

}

}

Figure 5.7: Pseudo code of an N ­tap FIR filter.

Figure 5.6(c) shows the FIR filter in the case of the partitioning approach. Here,
the iterations within the tile are processed in parallel by 4 PEs. Each PE contains one
MUL and one ADD unit. The tiles are processed global sequentially. The pseudo
code of the partitioned FIR filter is given in Figure 5.9.
The major questions that need to be answered on basis of several algorithms are:
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FORALL (i >= 0 and i <= T-1)

{ FORALL (j >= 0 and j <= N/2-1)

{ IF (i==0) THEN

{ a0[i,j] = a_in0[j];

a1[i,j] = a_in1[j];

u1[i,j] = 0;

}

ELSE

{ a0[i,j] = a0[i-1,j];

a1[i,j] = a1[i-1,j];

u1[i,j] = u0[i-1,j];

}

IF (j==0) THEN

{ u0[i,j] = u_in[i];

y0[i,j] = a0[i,j] * u0[i,j];

}

ELSE

{ y0[i,j] = y1[i,j-1] + a0[i,j] * u0[i,j];

IF (i==0) THEN u0[i,j] = 0;

ELSE u0[i,j] = u1[i-1,j-1];

}

y1[i,j] = y0[i,j] + a1[i,j] * u1[i,j];

IF (j == N-1) y_out[i] = y1[i,j];

}

}

Figure 5.8: FIR filter unrolled by a factor of u=2.

• What is the quantitative trade­off in terms of hardware cost, performance, and
power between loop unrolling and partitioning?

• What should be the optimal granularity of resources in parallel processors for
efficient mapping?

In the following, we answer the above questions by a quantitative analysis of the
hardware generated for the transformed loop programs by the PARO design system.
In more detail, we compare the two methods described before with respect to re­
source usage, performance (clock frequency and throughput), and power. Several
experiments with different setups have been performed. Also the difference between
the usage of dedicated DSP elements of the target devices or the synthesis purely in
LUTs has been studied. The synthesis results were obtained from Xilinx ISE 9.1 for
a Xilinx Virtex 4 FPGA (xc4vlx100­12ff1513). For the estimation of the dynamic
power, Xilinx XPower was used in combination with the post­place & route simulation
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FORALL (i >= 0 and i <= T-1)

{ FORALL (j >= 0 and j <= P-1) // P: number of PEs

{ FORALL (k >= 0 and k <= N/P-1) // Iteration over

// different tiles

{ IF (i==0) THEN

{ a[i,j,k] = a_in[j+k];

}

ELSE

{ a[i,j,k] = a[i-1,j,k];

IF (j>0) THEN

u[i,j,k] = u[i-1,j-1,k]; // Intra-tile comm.

ELSEIF (k>0) THEN

u[i,j,k] = u[i-1,j+P-1,k-1]; // Inter-tile comm.

}

IF (j==0 and k==0) THEN

{ u[i,j,k] = u_in[i];

y[i,j,k] = a[i,j,k] * u[i,j,k];

}

ELSEIF (i==0) THEN u[i,j,k] = 0;

IF (j>0) THEN

y[i,j,k] = y[i,j-1,k] + a[i,j,k] * u[i,j,k];

ELSEIF (k>0) THEN

y[i,j,k] = y[i,j+P-1,k-1] + x[i,j,k];

IF (j==P-1 and k==N/P-1)

y_out[i] = y1[i,j,k];

}

}

}

Figure 5.9: Partitioned FIR filter.

models of the designs. The usage of BRAMs was disabled throughout all experiments
except for the matrix multiplication where we allowed BRAMs for the storage of
intermediate data.

In the first experiment, an 8­bit 64­tap FIR filter is considered. The coefficients
of the filter are reconfigurable, that means, they were implemented as inputs. The
results are shown in Table 5.5, where the first column denotes the unroll factor u
in case of the standard high­level synthesis (HLS) approach, and in case of a pro­
cessor array approach, the number of processing elements (#PE). This number also
corresponds to the total number of available multipliers and adders for the data­path
implementation in both variants. The results for the HLS approach and for the pro­
cessor follows in the table. Finally, in the last column of the table, the number of
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Table 5.5: Resource usage and performance of different 64­tap FIR filter implemen­
tations.

HLS DSP48
u LUTs FFs Clock Through­ Power slices

[no.] [no.] [no.] [MHz] put [MB/sec] [mW] [no.]
2 207 152 189 5.6 19 0
4 366 252 197 11.7 24 0
8 723 501 201 24.0 37 0

16 1428 999 168 40.1 49 0
32 3037 2143 164 78.2 93 0
64 6681 4540 156 148.8 189 0

2 150 126 163 4.9 18 2
4 215 192 192 11.4 27 4
8 347 324 193 23.0 38 8

16 636 727 185 44.1 60 16
32 1471 1623 182 86.8 114 32
64 3284 3333 143 136.4 240 64

Processor Array DSP48
#PE LUTs Diff. FFs Diff. Clock Diff. Through­ Power Diff. slices
[no.] [no.] [%] [no.] [%] [MHz] [%] put [MB/sec] [mW] [%] [no.]

2 242 16.9 154 1.3 218 15.3 6.5 23 21.1 0
4 395 7.9 256 1.6 219 11.2 13.1 29 20.8 0
8 734 1.5 471 ­6.0 224 11.4 26.7 41 10.8 0

16 1401 ­1.9 861 ­13.8 218 29.8 52.0 62 26.5 0
32 2748 ­9.5 1698 ­20.8 210 28.0 100.1 103 10.8 0
64 4907 ­26.6 4321 ­4.8 222 42.3 211.7 187 ­1.1 0

2 185 23.3 140 11.1 231 41.7 6.9 27 50.0 2
4 249 15.8 224 16.7 213 10.9 12.7 32 18.5 4
8 413 19.0 396 22.2 218 13.0 26.0 47 23.7 8

16 738 16.0 736 1.2 185 0.0 44.1 64 6.7 16
32 1382 ­6.1 1418 ­12.6 212 16.5 101.1 130 14.0 32
64 2631 ­19.9 2794 ­16.2 192 34.3 183.1 219 ­8.8 64

consumed DSP48 slices is given. Two columns depict the cost in terms of the num­
ber of look­up tables (LUTs) and slice flip­flops (FFs), two other columns represent
the performance metrics clock frequency and throughput followed by the dynamic
power consumption. Next to each column (LUTs, FFs, clock, power) of the proces­
sor array implementations, the relative difference compared with the HLS approach
is given. Since the throughput is proportional to the clock frequency, the relative
difference is the same and is omitted in the table.

In the upper half of Table 5.5, the usage of dedicated DSP48 slices was disabled.
Here, for the lowest resource usage (u = 2), the processor array implementation is
more than 15% faster than the unrolled variant but also requires more resources,
that is 16.9% more LUTs and 1.3% more flip­flops. Note that the power dissipation
is proportional to the clock frequency. It can be noticed that for increasing u, the
clock frequency of the HLS approach is decreasing whereas for the processor array
implementations it is almost constant. It seems that the place and route routines do
not perform so well for larger designs (flattened register­transfer circuits), whereas
the clustering of operations into several processor elements performs much better in
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Figure 5.10: Throughput, throughput per gate, and the throughput per mW for
different unroll factors and numbers of processor elements, respectively.

terms of clock speed. A closer look at the placed and routed designs reveals that
longer wires and more multiplexing are the reasons for the lower clock frequency
and for the higher amount of LUTs for the loop unrolled versions compared with
the partitioned versions.

In a second run of experiments, the multiplications in the FIR algorithms were
implemented by the Xilinx DSP48 slices. The results for different unroll factors and
number of processing elements are also shown in Table 5.5. Because of the prede­
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Figure 5.11: The speedup (with respect to throughput), cost and power increase for
different 64­tap FIR filter implementations in relation to a sequentialized implemen­
tation, where only a single processing element with one multiplier and one adder was
available, is shown.

termined location of the DSP48 slices, the values are fluctuating more than in the
previous case (no DSP48 slices). However, apart from one outlier, the throughput
of the processor array approach is 11 to 42% higher as compared with the unrolled
approach. In Figure 5.10, the throughput itself, normalized by the gate count, and
the throughput per mW is shown. In Figure 5.11, the speedup characterizes the
performance gain with respect to the throughput for the FIR filter algorithm. The
cost increase is related to the gate count of the designs. In the single PE solution of
the FIR filter, the 64 iterations are executed sequentially within one PE. For this so­
lution both, throughput and cost, are normalized to 1.0. Partitioning the algorithm
to 2, 4, . . . , 64 PEs theoretically enables also a higher throughput by the same factor.
The superlinear speedup in case of the processor array implementations is because
of the increasing clock frequency for larger numbers of PEs. The moderate cost and
power increase is caused by the decreasing amount of intermediate data, which have
to be stored internally in the processor array.

Since the difference for the u = 64 implementations was tremendous, several
other fully unrolled/full size versions have been studied. The results are shown in
Figure 5.12. When enabling the DSP48 slices, the throughput for the unrolled
approach sharply falls for higher numbers of taps. Note that these results should
not be used to compare the achievable throughput between DSP48 and LUT­based
implementations since an optimal pipelined version of the DSP48 slices has not been
used in the experiments.

192



Loop Unrolling versus Loop Partitioning

As a second algorithm, a DCT width 8­bit I/O and internally up to 16 bits
datapath was studied. The results for different numbers of available multipliers, im­
plemented in DSP48 slices, are shown in Table 5.6. Unlike the FIR filter, the DCT
has no loop­carried data dependencies. The loop body of the DCT was unrolled
four times and a processor array consisting of 4 processing elements was considered.
The unrolled loop body contains 96 multiplications and therefore, the results for
the cost (LUTs, FFs) of the last experiment, where 96 multipliers were available, are
quite close. However, in three of four cases, the processor array implementation has
a better throughput of up to 21% along with an increased power dissipation by only
11%.

For the last evaluation, an algorithm for the multiplication of two 64×64 matrices
was considered. Using the processor array approach, again a higher clock frequency
and throughput as compared with the loop unrolling approach using the same num­
ber of resources (multipliers and adders) was achieved (see Table 5.7). The higher
area cost in terms of LUTs for the processor array approach is caused by the con­

 0

 1.2

 2.4

 3.6

 4.8

8 16 24 32 48 64

th
ro

u
g
h
p
u
t 
[M

B
/s

] 
/ 
m

W

number of taps

HLS, unrolled, no DSP
processor array, no DSP

HLS, unrolled, DSP
processor array, DSP

 125

 150

 175

 200

 225

 250

th
ro

u
g
h
p
u
t 
[M

B
/s

]

HLS, unrolled, no DSP
processor array, no DSP

HLS, unrolled, DSP
processor array, DSP

Figure 5.12: Throughput of different fully unrolled and full size FIR filter imple­
mentations.
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Table 5.6: Resource usage and performance of different DCT implementations.

no HLS DSP48
of LUTs FFs Clock Through­ Power slices

mult. [no.] [no.] [MHz] put [MB/sec] [mW] [no.]

16 3935 1717 152 48.3 438 16
32 3944 2644 186 118.3 528 32
48 3590 3141 185 176.4 700 48
96 3023 3556 190 362.4 867 96

no Processor Array DSP48
of LUTs Diff. FFs Diff. Clock Diff. Through­ Power Diff. slices

mult. [no.] [%] [no.] [%] [MHz] [%] put [MB/sec] [mW] [%] [no.]

16 3811 ­3.2 1760 2.5 163 7.2 51.8 483 10.3 16
32 3808 ­3.4 2543 ­3.8 175 ­5.9 111.3 638 20.8 32
48 3457 ­3.7 3080 ­1.9 224 21.1 213.6 778 11.1 48
96 3067 1.5 3600 1.2 207 8.9 394.8 880 1.5 96

Table 5.7: Resource usage and performance of different matrix multiplication imple­
mentations.

HLS
u LUTs FFs Clock Through­

[no.] [no.] [no.] [MHz] put [MB/sec]
2 784 474 148 9.2
4 1459 812 145 18.2
8 3049 1724 123 30.8

16 5937 3166 125 62.4
Processor Array

#PE LUTs Diff. FFs Diff. Clock Diff. Through­
[no.] [no.] [%] [no.] [%] [MHz] [%] put [MB/sec]

2 895 14.2 603 27.2 153 3.4 9.5
4 1629 11.7 1082 33.3 149 2.8 18.6
8 3030 ­0.1 2038 18,2 152 23.6 38.1

16 5895 ­0.1 3991 26,0 172 37.6 85.8

trol overhead when partitioning the algorithm onto several processor elements. 8
BRAMs were instantiated for data reuse in both the variants.

In addition, we also performed the experiments with Altera tools and devices.
Here, we obtained similar but closer results between unrolling and partitioning since
Altera’s placement routines seem to uncover better locality in many cases.

5.7 Real World Case Study

A multiresolution algorithm, such as used in digital video or medical image process­
ing, has been considered as a real world case study. Characteristic for these filters
is the processing of an image at different resolutions (see Figure 5.13). Here, in a
decomposition phase, two image pyramids with subsequently reduced resolutions
(g0(1024× 1024), g1(512× 512), . . . and l0(1024× 1024), l1(512× 512), . . .) are con­
structed. The images gi , 1 ≤ i ≤ 5 are so called Gaussian images that are obtained
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by downsampling the previous image gi−1 by a factor of two in both directions and
subsequent smoothing by a 3×3 Gaussian filter. The second pyramid (l j , 0≤ j ≤ 4)
represents the edges in the image at different resolutions. The edges are obtained
by a Laplacian filter, hence the images l j are called Laplacian images. At each layer,
a Gaussian and a Laplacian image is fed to a filter, except to the last filter, where
two times g5 is used. Filtering of an image at different resolutions has the advan­
tage that each feature of the image can be processed at its most appropriate scale,
while the filter kernel can be kept small simultaneously. After filtering, the image
is reconstructed from the bottom up by expanding and adding two images at each
layer.

The operations (downsampling, upsampling, lowpass) within the decomposition
and reconstruction phase have little computational complexity. The situation is dif­
ferent for the filter kernels. Here, a non­linear gradient adaptive filter is used. The
filter reduces noise in the images significantly, while fine and sharp image structure
are preserved.

The filter has been formulated in one non­perfectly nested PAULA program. It
mainly consists of the following parts:

• Border treatment (mirroring),

filter0
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Figure 5.13: Multiresolution filter with five layers and six filter kernels, respectively.
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• Gradient computation,

• Weighting kernel computation,

• Weighting kernel normalization,

• Convolution.

Overall, the program consists of 306 lines of code, where half of the code is devoted
to the border treatment.

Table 5.8: Multiresolution filter: Number of operations within the filter kernel.

Operation Number

data type conversions 3
comparisons 3
additions 26
divisions 2
exponential functions 9
multiplications 35
shift operations 33
subtractions 16
subtractions (unary) 9

After applying several high­level transformations to the program (cf. Section 4.2), the
number of operations for one iteration or rather for the computation of one pixel is
known. An overview of types and number of operations is given in Table 5.8.

Table 5.9: Multiresolution filter: Resource allocation for each filter kernel.

Filter P mult exp div1 div4 div8
w = 5 w = 23 w = 53 w = 56 w = 56
δ = 1 δ = 1 δ = 1 δ = 4 δ = 8

filter0 2 19 5 1 0 0
filter1 8 5 2 0 1 0
filter2 32 2 1 0 0 1
filter3 128 1 1 0 0 1
filter4 512 1 1 0 0 1
filter5 2048 1 1 0 0 1

The numerous propagations and assignment operations, for instance for the border
treatment are not counted in Table 5.8. The corresponding reduced dependence
graph consists of 384 nodes and 633 edges (see Figure 5.14). The input data streams
with 50 million pixels per second through the input port. Thus, the assumption was
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/  x\|  y|\__z/

/  x\ /-2\|  y|+| 0|\__z/ \ 0/

0

29 signed fixed<32,16>

eq29:g_1 [prop]
tau = 0
asap = 0

alap = 130

/ 0  1  0\      / -1\     | 0 -1  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 1  0  0|      | -2|     \-1  0  0/      \511/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+| 0|\__z/ \ 0/

0

30 signed fixed<32,16>

eq30:g_2 [prop]
tau = 1
asap = 1

alap = 130

/ 0  1  0\      / -1\     | 0 -1  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 1  0  0|      | -2|     \-1  0  0/      \511/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

31 signed fixed<32,16>

eq31:g_3 [prop]
tau = 0
asap = 0

alap = 131

/ 0  1  0\      / -1\     | 0 -1  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 1  0  0|      | -2|     \-1  0  0/      \511/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-1|\__z/ \ 0/

0

32 signed fixed<32,16>

eq32:g_4 [prop]
tau = 0
asap = 0

alap = 301

/ 0  1  0\      / -1\     | 0 -1  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 1  0  0|      | -2|     \-1  0  0/      \511/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-1|\__z/ \ 0/

0

33 signed fixed<32,16>

eq33:g_5 [prop]
tau = 0
asap = 0

alap = 132

/ 0  1  0\      / -1\     | 0 -1  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 1  0  0|      | -2|     \-1  0  0/      \511/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-1|\__z/ \ 0/

0

34 signed fixed<32,16>

eq34:g_6 [prop]
tau = 0
asap = 0

alap = 132

/ 0  1  0\      / -1\     | 0 -1  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 1  0  0|      | -2|     \-1  0  0/      \511/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+| 0|\__z/ \ 0/

0

35 signed fixed<32,16>

eq35:g_7 [prop]
tau = 0
asap = 0

alap = 133

/ 0  1  0\      / -1\     | 0 -1  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 1  0  0|      | -2|     \-1  0  0/      \511/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+| 0|\__z/ \ 0/

0

36 signed fixed<32,16>

eq36:g_8 [prop]
tau = 1
asap = 1

alap = 134

/ 0  1  0\      / -1\     | 0 -1  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 1  0  0|      | -2|     \-1  0  0/      \511/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

37 signed fixed<32,16>

eq37:g_0 [prop]
tau = 0
asap = 0

alap = 129

/ 0  1  0\      /-512\     | 0 -1  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 1  0  0|      |  -2|     \-1  0  0/      \ 511/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-2|\__z/ \ 0/

0

38 signed fixed<32,16>

eq38:g_1 [prop]
tau = 0
asap = 0

alap = 130

/ 0  1  0\      /-512\     | 0 -1  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 1  0  0|      |  -2|     \-1  0  0/      \ 511/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-2|\__z/ \ 0/

0

39 signed fixed<32,16>

eq39:g_2 [prop]
tau = 0
asap = 0

alap = 130

/ 0  1  0\      /-512\     | 0 -1  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 1  0  0|      |  -2|     \-1  0  0/      \ 511/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-2|\__z/ \ 0/

0

40 signed fixed<32,16>

eq40:g_3 [prop]
tau = 0
asap = 0

alap = 131

/ 0  1  0\      /-512\     | 0 -1  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 1  0  0|      |  -2|     \-1  0  0/      \ 511/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-1|\__z/ \ 0/

0

41 signed fixed<32,16>

eq41:g_4 [prop]
tau = 0
asap = 0

alap = 301

/ 0  1  0\      /-512\     | 0 -1  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 1  0  0|      |  -2|     \-1  0  0/      \ 511/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-1|\__z/ \ 0/

0

42 signed fixed<32,16>

eq42:g_5 [prop]
tau = 0
asap = 0

alap = 132

/ 0  1  0\      /-512\     | 0 -1  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 1  0  0|      |  -2|     \-1  0  0/      \ 511/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-1|\__z/ \ 0/

0

43 signed fixed<32,16>

eq43:g_6 [prop]
tau = 0
asap = 0

alap = 132

/ 0  1  0\      /-512\     | 0 -1  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 1  0  0|      |  -2|     \-1  0  0/      \ 511/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-2|\__z/ \ 0/

0

44 signed fixed<32,16>

eq44:g_7 [prop]
tau = 0
asap = 0

alap = 133

/ 0  1  0\      /-512\     | 0 -1  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 1  0  0|      |  -2|     \-1  0  0/      \ 511/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-2|\__z/ \ 0/

0

45 signed fixed<32,16>

eq45:g_8 [prop]
tau = 0
asap = 0

alap = 134

/ 0  1  0\      /-512\     | 0 -1  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 1  0  0|      |  -2|     \-1  0  0/      \ 511/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-2|\__z/ \ 0/

0

46 signed fixed<32,16>

eq46:g_0 [prop]
tau = 1
asap = 1

alap = 129

/ 1  0  0\      /-1\     |-1  0  0|      | 1|     | 0  1  0|/  x\ |-1|     | 0 -1  0||  y|+| 1| >= 0| 0  0  1|\__z/ | 0|     | 0  0 -1|      | 0|     \ 0  0  0/      \ 1/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

47 signed fixed<32,16>

eq47:g_1 [prop]
tau = 0
asap = 0

alap = 130

/ 1  0  0\      /-1\     |-1  0  0|      | 1|     | 0  1  0|/  x\ |-1|     | 0 -1  0||  y|+| 1| >= 0| 0  0  1|\__z/ | 0|     | 0  0 -1|      | 0|     \ 0  0  0/      \ 1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+| 0|\__z/ \ 0/

0

48 signed fixed<32,16>

eq48:g_2 [prop]
tau = 1
asap = 1

alap = 130

/ 1  0  0\      /-1\     |-1  0  0|      | 1|     | 0  1  0|/  x\ |-1|     | 0 -1  0||  y|+| 1| >= 0| 0  0  1|\__z/ | 0|     | 0  0 -1|      | 0|     \ 0  0  0/      \ 1/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

49 signed fixed<32,16>

eq49:g_3 [prop]
tau = 0
asap = 0

alap = 131

/ 1  0  0\      /-1\     |-1  0  0|      | 1|     | 0  1  0|/  x\ |-1|     | 0 -1  0||  y|+| 1| >= 0| 0  0  1|\__z/ | 0|     | 0  0 -1|      | 0|     \ 0  0  0/      \ 1/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-1|\__z/ \ 0/

0

50 signed fixed<32,16>

eq50:g_4 [prop]
tau = 0
asap = 0

alap = 301

/ 1  0  0\      /-1\     |-1  0  0|      | 1|     | 0  1  0|/  x\ |-1|     | 0 -1  0||  y|+| 1| >= 0| 0  0  1|\__z/ | 0|     | 0  0 -1|      | 0|     \ 0  0  0/      \ 1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-1|\__z/ \ 0/

0

51 signed fixed<32,16>

eq51:g_5 [prop]
tau = 0
asap = 0

alap = 132

/ 1  0  0\      /-1\     |-1  0  0|      | 1|     | 0  1  0|/  x\ |-1|     | 0 -1  0||  y|+| 1| >= 0| 0  0  1|\__z/ | 0|     | 0  0 -1|      | 0|     \ 0  0  0/      \ 1/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-1|\__z/ \ 0/

0

52 signed fixed<32,16>

eq52:g_6 [prop]
tau = 1
asap = 1

alap = 132

/ 1  0  0\      /-1\     |-1  0  0|      | 1|     | 0  1  0|/  x\ |-1|     | 0 -1  0||  y|+| 1| >= 0| 0  0  1|\__z/ | 0|     | 0  0 -1|      | 0|     \ 0  0  0/      \ 1/     
/  x\|  y|\__z//  x\|  y|\__z/

0

53 signed fixed<32,16>

eq53:g_7 [prop]
tau = 0
asap = 0

alap = 133

/ 1  0  0\      /-1\     |-1  0  0|      | 1|     | 0  1  0|/  x\ |-1|     | 0 -1  0||  y|+| 1| >= 0| 0  0  1|\__z/ | 0|     | 0  0 -1|      | 0|     \ 0  0  0/      \ 1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+| 0|\__z/ \ 0/

0

54 signed fixed<32,16>

eq54:g_8 [prop]
tau = 1
asap = 1

alap = 134

/ 1  0  0\      /-1\     |-1  0  0|      | 1|     | 0  1  0|/  x\ |-1|     | 0 -1  0||  y|+| 1| >= 0| 0  0  1|\__z/ | 0|     | 0  0 -1|      | 0|     \ 0  0  0/      \ 1/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

55 signed fixed<32,16>

eq55:g_0 [prop]
tau = 0
asap = 0

alap = 129

/ 1  0  0\      /  -1\     |-1  0  0|      |   1|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-2|\__z/ \ 0/

0

56 signed fixed<32,16>

eq56:g_1 [prop]
tau = 0
asap = 0

alap = 130

/ 1  0  0\      /  -1\     |-1  0  0|      |   1|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-2|\__z/ \ 0/

0

57 signed fixed<32,16>

eq57:g_2 [prop]
tau = 0
asap = 0

alap = 130

/ 1  0  0\      /  -1\     |-1  0  0|      |   1|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-2|\__z/ \ 0/

0

58 signed fixed<32,16>

eq58:g_3 [prop]
tau = 0
asap = 0

alap = 131

/ 1  0  0\      /  -1\     |-1  0  0|      |   1|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-1|\__z/ \ 0/

0

59 signed fixed<32,16>

eq59:g_4 [prop]
tau = 0
asap = 0

alap = 301

/ 1  0  0\      /  -1\     |-1  0  0|      |   1|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-1|\__z/ \ 0/

0

60 signed fixed<32,16>

eq60:g_5 [prop]
tau = 0
asap = 0

alap = 132

/ 1  0  0\      /  -1\     |-1  0  0|      |   1|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-1|\__z/ \ 0/

0

61 signed fixed<32,16>

eq61:g_6 [prop]
tau = 0
asap = 0

alap = 132

/ 1  0  0\      /  -1\     |-1  0  0|      |   1|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-2|\__z/ \ 0/

0

62 signed fixed<32,16>

eq62:g_7 [prop]
tau = 0
asap = 0

alap = 133

/ 1  0  0\      /  -1\     |-1  0  0|      |   1|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-2|\__z/ \ 0/

0

63 signed fixed<32,16>

eq63:g_8 [prop]
tau = 0
asap = 0

alap = 134

/ 1  0  0\      /  -1\     |-1  0  0|      |   1|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-2|\__z/ \ 0/

0

64 signed fixed<32,16>

eq64:g_0 [prop]
tau = 0
asap = 0

alap = 129

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |  -1|     | 0 -1  0||  y|+|   1| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+| 0|\__z/ \ 0/

0

65 signed fixed<32,16>

eq65:g_1 [prop]
tau = 0
asap = 0

alap = 130

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |  -1|     | 0 -1  0||  y|+|   1| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+| 0|\__z/ \ 0/

0

66 signed fixed<32,16>

eq66:g_2 [prop]
tau = 0
asap = 0

alap = 130

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |  -1|     | 0 -1  0||  y|+|   1| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+| 0|\__z/ \ 0/

0

67 signed fixed<32,16>

eq67:g_3 [prop]
tau = 0
asap = 0

alap = 131

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |  -1|     | 0 -1  0||  y|+|   1| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-1|\__z/ \ 0/

0

68 signed fixed<32,16>

eq68:g_4 [prop]
tau = 0
asap = 0

alap = 301

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |  -1|     | 0 -1  0||  y|+|   1| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-1|\__z/ \ 0/

0

69 signed fixed<32,16>

eq69:g_5 [prop]
tau = 0
asap = 0

alap = 132

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |  -1|     | 0 -1  0||  y|+|   1| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-1|\__z/ \ 0/

0

70 signed fixed<32,16>

eq70:g_6 [prop]
tau = 0
asap = 0

alap = 132

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |  -1|     | 0 -1  0||  y|+|   1| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+| 0|\__z/ \ 0/

0

71 signed fixed<32,16>

eq71:g_7 [prop]
tau = 0
asap = 0

alap = 133

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |  -1|     | 0 -1  0||  y|+|   1| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+| 0|\__z/ \ 0/

0

72 signed fixed<32,16>

eq72:g_8 [prop]
tau = 0
asap = 0

alap = 134

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |  -1|     | 0 -1  0||  y|+|   1| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+| 0|\__z/ \ 0/

0

73 signed fixed<32,16>

eq73:g_0 [prop]
tau = 0
asap = 0

alap = 129

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-2|\__z/ \ 0/

0

74 signed fixed<32,16>

eq74:g_1 [prop]
tau = 0
asap = 0

alap = 130

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-2|\__z/ \ 0/

0

75 signed fixed<32,16>

eq75:g_2 [prop]
tau = 0
asap = 0

alap = 130

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-2|\__z/ \ 0/

0

76 signed fixed<32,16>

eq76:g_3 [prop]
tau = 0
asap = 0

alap = 131

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-1|\__z/ \ 0/

0

77 signed fixed<32,16>

eq77:g_4 [prop]
tau = 0
asap = 0

alap = 301

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-1|\__z/ \ 0/

0

78 signed fixed<32,16>

eq78:g_5 [prop]
tau = 0
asap = 0

alap = 132

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-1|\__z/ \ 0/

0

79 signed fixed<32,16>

eq79:g_6 [prop]
tau = 0
asap = 0

alap = 132

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-2|\__z/ \ 0/

0

80 signed fixed<32,16>

eq80:g_7 [prop]
tau = 0
asap = 0

alap = 133

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-2|\__z/ \ 0/

0

81 signed fixed<32,16>

eq81:g_8 [prop]
tau = 0
asap = 0

alap = 134

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-2|\__z/ \ 0/

0

385 pseudo

__pseudo END node__
tau = 175
asap = 173
alap = 301

  

164 signed fixed<32,16>

eq164:hx_exsp0 sub
tau = 1
asap = 1

alap = 129
w = 1

r_sub_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

173 signed fixed<32,16>

eq173:hy_exsp0 sub
tau = 1
asap = 1

alap = 129
w = 1

r_sub_signed_fixed[1]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

174 signed fixed<32,16>

eq174:hy_exsp1 shl
tau = 0
asap = 0

alap = 130
w = 0

__builtin_shl_1_signed_fixed_3\
2_16_[2]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

165 signed fixed<32,16>

eq165:hx_exsp1 add
tau = 2
asap = 2

alap = 130
w = 1

r_add_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

176 signed fixed<32,16>

eq176:hy_exsp3 sub
tau = 3
asap = 3

alap = 131
w = 1

r_sub_signed_fixed[1]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

  

166 signed fixed<32,16>

eq166:hx_exsp2 shl
tau = 0
asap = 0

alap = 131
w = 0

__builtin_shl_1_signed_fixed_3\
2_16_[0]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

  

168 signed fixed<32,16>

eq168:hx_exsp4 shl
tau = 0
asap = 0

alap = 132
w = 0

__builtin_shl_1_signed_fixed_3\
2_16_[1]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

170 signed fixed<32,16>

eq170:hx_exsp6 sub
tau = 5
asap = 5

alap = 133
w = 1

r_sub_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

177 signed fixed<32,16>

eq177:hy_exsp4 add
tau = 4
asap = 4

alap = 132
w = 1

r_add_signed_fixed[1]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/
1

  

178 signed fixed<32,16>

eq178:hy_exsp5 shl
tau = 0
asap = 0

alap = 133
w = 0

__builtin_shl_1_signed_fixed_3\
2_16_[3]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

171 signed fixed<32,16>

eq171:hx_exsp7 add
tau = 6
asap = 6

alap = 134
w = 1

r_add_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

180 signed fixed<32,16>

eq180:hy_exsp7 add
tau = 6
asap = 6

alap = 134
w = 1

r_add_signed_fixed[1]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/
0

  

/  x\|  y|\__z/

1/  x\|  y|\__z/

1

  

/  x\|  y|\__z/ 0

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/ 1

/  x\|  y|\__z/ 1

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1
/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/
1

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

/  x\|  y|\__z/1

  

/  x\|  y|\__z/

0

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

/  x\|  y|\__z/ 1

  

82 signed fixed<32,16>

eq82:l_in_tmp _cast
tau = 0
asap = 0

alap = 291
w = 1

r_cast_signed_integer_to_signe\
d_fixed[1]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     |-1  0  0||  y|+|511| >= 0| 0 -1  0|\__z/ |511|     | 1  0  0|      |  0|     \ 0  1  0/      \  0/     
/  x\|  y|\__z/

83 signed fixed<32,16>

eq83:l_0 [prop]
tau = 0
asap = 0

alap = 292

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -2| >= 0|-1  0  0|\__z/ |511|     | 0  1  0|      | -2|     \ 0 -1  0/      \511/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-2|\__z/ \ 0/

0

84 signed fixed<32,16>

eq84:l_1 [prop]
tau = 0
asap = 0

alap = 292

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -2| >= 0|-1  0  0|\__z/ |511|     | 0  1  0|      | -2|     \ 0 -1  0/      \511/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-2|\__z/ \ 0/

0

85 signed fixed<32,16>

eq85:l_2 [prop]
tau = 0
asap = 0

alap = 292

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -2| >= 0|-1  0  0|\__z/ |511|     | 0  1  0|      | -2|     \ 0 -1  0/      \511/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-2|\__z/ \ 0/

0

86 signed fixed<32,16>

eq86:l_3 [prop]
tau = 0
asap = 0

alap = 292

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -2| >= 0|-1  0  0|\__z/ |511|     | 0  1  0|      | -2|     \ 0 -1  0/      \511/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-1|\__z/ \ 0/

0

87 signed fixed<32,16>

eq87:l_4 [prop]
tau = 0
asap = 0

alap = 297

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -2| >= 0|-1  0  0|\__z/ |511|     | 0  1  0|      | -2|     \ 0 -1  0/      \511/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-1|\__z/ \ 0/

0

88 signed fixed<32,16>

eq88:l_5 [prop]
tau = 0
asap = 0

alap = 292

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -2| >= 0|-1  0  0|\__z/ |511|     | 0  1  0|      | -2|     \ 0 -1  0/      \511/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-1|\__z/ \ 0/

0

89 signed fixed<32,16>

eq89:l_6 [prop]
tau = 0
asap = 0

alap = 292

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -2| >= 0|-1  0  0|\__z/ |511|     | 0  1  0|      | -2|     \ 0 -1  0/      \511/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+| 0|\__z/ \ 0/

0

90 signed fixed<32,16>

eq90:l_7 [prop]
tau = 0
asap = 0

alap = 292

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -2| >= 0|-1  0  0|\__z/ |511|     | 0  1  0|      | -2|     \ 0 -1  0/      \511/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+| 0|\__z/ \ 0/

0

91 signed fixed<32,16>

eq91:l_8 [prop]
tau = 1
asap = 1

alap = 295

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -2| >= 0|-1  0  0|\__z/ |511|     | 0  1  0|      | -2|     \ 0 -1  0/      \511/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

92 signed fixed<32,16>

eq92:l_0 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      / -1\     |-1  0  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 0  1  0|      | -2|     \ 0 -1  0/      \511/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-2|\__z/ \ 0/

0

93 signed fixed<32,16>

eq93:l_1 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      / -1\     |-1  0  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 0  1  0|      | -2|     \ 0 -1  0/      \511/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-2|\__z/ \ 0/

0

94 signed fixed<32,16>

eq94:l_2 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      / -1\     |-1  0  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 0  1  0|      | -2|     \ 0 -1  0/      \511/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-2|\__z/ \ 0/

0

95 signed fixed<32,16>

eq95:l_3 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      / -1\     |-1  0  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 0  1  0|      | -2|     \ 0 -1  0/      \511/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-1|\__z/ \ 0/

0

96 signed fixed<32,16>

eq96:l_4 [prop]
tau = 0
asap = 0

alap = 297

/ 1  0  0\      / -1\     |-1  0  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 0  1  0|      | -2|     \ 0 -1  0/      \511/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-1|\__z/ \ 0/

0

97 signed fixed<32,16>

eq97:l_5 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      / -1\     |-1  0  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 0  1  0|      | -2|     \ 0 -1  0/      \511/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-1|\__z/ \ 0/

0

98 signed fixed<32,16>

eq98:l_6 [prop]
tau = 1
asap = 1

alap = 292

/ 1  0  0\      / -1\     |-1  0  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 0  1  0|      | -2|     \ 0 -1  0/      \511/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

99 signed fixed<32,16>

eq99:l_7 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      / -1\     |-1  0  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 0  1  0|      | -2|     \ 0 -1  0/      \511/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+| 0|\__z/ \ 0/

0

100 signed fixed<32,16>

eq100:l_8 [prop]
tau = 1
asap = 1

alap = 295

/ 1  0  0\      / -1\     |-1  0  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 0  1  0|      | -2|     \ 0 -1  0/      \511/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

101 signed fixed<32,16>

eq101:l_0 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-512\     |-1  0  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 0  1  0|      |  -2|     \ 0 -1  0/      \ 511/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-2|\__z/ \ 0/

0

102 signed fixed<32,16>

eq102:l_1 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-512\     |-1  0  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 0  1  0|      |  -2|     \ 0 -1  0/      \ 511/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-2|\__z/ \ 0/

0

103 signed fixed<32,16>

eq103:l_2 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-512\     |-1  0  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 0  1  0|      |  -2|     \ 0 -1  0/      \ 511/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-2|\__z/ \ 0/

0

104 signed fixed<32,16>

eq104:l_3 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-512\     |-1  0  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 0  1  0|      |  -2|     \ 0 -1  0/      \ 511/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-1|\__z/ \ 0/

0

105 signed fixed<32,16>

eq105:l_4 [prop]
tau = 0
asap = 0

alap = 297

/ 1  0  0\      /-512\     |-1  0  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 0  1  0|      |  -2|     \ 0 -1  0/      \ 511/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-1|\__z/ \ 0/

0

106 signed fixed<32,16>

eq106:l_5 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-512\     |-1  0  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 0  1  0|      |  -2|     \ 0 -1  0/      \ 511/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-1|\__z/ \ 0/

0

107 signed fixed<32,16>

eq107:l_6 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-512\     |-1  0  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 0  1  0|      |  -2|     \ 0 -1  0/      \ 511/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+| 0|\__z/ \ 0/

0

108 signed fixed<32,16>

eq108:l_7 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-512\     |-1  0  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 0  1  0|      |  -2|     \ 0 -1  0/      \ 511/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+| 0|\__z/ \ 0/

0

109 signed fixed<32,16>

eq109:l_8 [prop]
tau = 0
asap = 0

alap = 295

/ 1  0  0\      /-512\     |-1  0  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 0  1  0|      |  -2|     \ 0 -1  0/      \ 511/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+| 0|\__z/ \ 0/

0

110 signed fixed<32,16>

eq110:l_0 [prop]
tau = 0
asap = 0

alap = 292

/ 0  1  0\      / -1\     | 0 -1  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 1  0  0|      | -2|     \-1  0  0/      \511/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+| 0|\__z/ \ 0/

0

111 signed fixed<32,16>

eq111:l_1 [prop]
tau = 0
asap = 0

alap = 292

/ 0  1  0\      / -1\     | 0 -1  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 1  0  0|      | -2|     \-1  0  0/      \511/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+| 0|\__z/ \ 0/

0

112 signed fixed<32,16>

eq112:l_2 [prop]
tau = 1
asap = 1

alap = 292

/ 0  1  0\      / -1\     | 0 -1  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 1  0  0|      | -2|     \-1  0  0/      \511/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

113 signed fixed<32,16>

eq113:l_3 [prop]
tau = 0
asap = 0

alap = 292

/ 0  1  0\      / -1\     | 0 -1  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 1  0  0|      | -2|     \-1  0  0/      \511/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-1|\__z/ \ 0/

0

114 signed fixed<32,16>

eq114:l_4 [prop]
tau = 0
asap = 0

alap = 297

/ 0  1  0\      / -1\     | 0 -1  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 1  0  0|      | -2|     \-1  0  0/      \511/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-1|\__z/ \ 0/

0

115 signed fixed<32,16>

eq115:l_5 [prop]
tau = 0
asap = 0

alap = 292

/ 0  1  0\      / -1\     | 0 -1  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 1  0  0|      | -2|     \-1  0  0/      \511/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-1|\__z/ \ 0/

0

116 signed fixed<32,16>

eq116:l_6 [prop]
tau = 0
asap = 0

alap = 292

/ 0  1  0\      / -1\     | 0 -1  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 1  0  0|      | -2|     \-1  0  0/      \511/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+| 0|\__z/ \ 0/

0

117 signed fixed<32,16>

eq117:l_7 [prop]
tau = 0
asap = 0

alap = 292

/ 0  1  0\      / -1\     | 0 -1  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 1  0  0|      | -2|     \-1  0  0/      \511/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+| 0|\__z/ \ 0/

0

118 signed fixed<32,16>

eq118:l_8 [prop]
tau = 1
asap = 1

alap = 295

/ 0  1  0\      / -1\     | 0 -1  0|/  x\ |  1|     | 0  0  1||  y|+|  0| >= 0| 0  0 -1|\__z/ |  0|     | 1  0  0|      | -2|     \-1  0  0/      \511/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

119 signed fixed<32,16>

eq119:l_0 [prop]
tau = 0
asap = 0

alap = 292

/ 0  1  0\      /-512\     | 0 -1  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 1  0  0|      |  -2|     \-1  0  0/      \ 511/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-2|\__z/ \ 0/

0

120 signed fixed<32,16>

eq120:l_1 [prop]
tau = 0
asap = 0

alap = 292

/ 0  1  0\      /-512\     | 0 -1  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 1  0  0|      |  -2|     \-1  0  0/      \ 511/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-2|\__z/ \ 0/

0

121 signed fixed<32,16>

eq121:l_2 [prop]
tau = 0
asap = 0

alap = 292

/ 0  1  0\      /-512\     | 0 -1  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 1  0  0|      |  -2|     \-1  0  0/      \ 511/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-2|\__z/ \ 0/

0

122 signed fixed<32,16>

eq122:l_3 [prop]
tau = 0
asap = 0

alap = 292

/ 0  1  0\      /-512\     | 0 -1  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 1  0  0|      |  -2|     \-1  0  0/      \ 511/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-1|\__z/ \ 0/

0

123 signed fixed<32,16>

eq123:l_4 [prop]
tau = 0
asap = 0

alap = 297

/ 0  1  0\      /-512\     | 0 -1  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 1  0  0|      |  -2|     \-1  0  0/      \ 511/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-1|\__z/ \ 0/

0

124 signed fixed<32,16>

eq124:l_5 [prop]
tau = 0
asap = 0

alap = 292

/ 0  1  0\      /-512\     | 0 -1  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 1  0  0|      |  -2|     \-1  0  0/      \ 511/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-1|\__z/ \ 0/

0

125 signed fixed<32,16>

eq125:l_6 [prop]
tau = 0
asap = 0

alap = 292

/ 0  1  0\      /-512\     | 0 -1  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 1  0  0|      |  -2|     \-1  0  0/      \ 511/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-2|\__z/ \ 0/

0

126 signed fixed<32,16>

eq126:l_7 [prop]
tau = 0
asap = 0

alap = 292

/ 0  1  0\      /-512\     | 0 -1  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 1  0  0|      |  -2|     \-1  0  0/      \ 511/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-2|\__z/ \ 0/

0

127 signed fixed<32,16>

eq127:l_8 [prop]
tau = 0
asap = 0

alap = 295

/ 0  1  0\      /-512\     | 0 -1  0|/  x\ | 512|     | 0  0  1||  y|+|   0| >= 0| 0  0 -1|\__z/ |   0|     | 1  0  0|      |  -2|     \-1  0  0/      \ 511/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-2|\__z/ \ 0/

0

128 signed fixed<32,16>

eq128:l_0 [prop]
tau = 1
asap = 1

alap = 292

/ 1  0  0\      /-1\     |-1  0  0|      | 1|     | 0  1  0|/  x\ |-1|     | 0 -1  0||  y|+| 1| >= 0| 0  0  1|\__z/ | 0|     | 0  0 -1|      | 0|     \ 0  0  0/      \ 1/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

129 signed fixed<32,16>

eq129:l_1 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-1\     |-1  0  0|      | 1|     | 0  1  0|/  x\ |-1|     | 0 -1  0||  y|+| 1| >= 0| 0  0  1|\__z/ | 0|     | 0  0 -1|      | 0|     \ 0  0  0/      \ 1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+| 0|\__z/ \ 0/

0

130 signed fixed<32,16>

eq130:l_2 [prop]
tau = 1
asap = 1

alap = 292

/ 1  0  0\      /-1\     |-1  0  0|      | 1|     | 0  1  0|/  x\ |-1|     | 0 -1  0||  y|+| 1| >= 0| 0  0  1|\__z/ | 0|     | 0  0 -1|      | 0|     \ 0  0  0/      \ 1/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

131 signed fixed<32,16>

eq131:l_3 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-1\     |-1  0  0|      | 1|     | 0  1  0|/  x\ |-1|     | 0 -1  0||  y|+| 1| >= 0| 0  0  1|\__z/ | 0|     | 0  0 -1|      | 0|     \ 0  0  0/      \ 1/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-1|\__z/ \ 0/

0

132 signed fixed<32,16>

eq132:l_4 [prop]
tau = 0
asap = 0

alap = 297

/ 1  0  0\      /-1\     |-1  0  0|      | 1|     | 0  1  0|/  x\ |-1|     | 0 -1  0||  y|+| 1| >= 0| 0  0  1|\__z/ | 0|     | 0  0 -1|      | 0|     \ 0  0  0/      \ 1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-1|\__z/ \ 0/

0

133 signed fixed<32,16>

eq133:l_5 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-1\     |-1  0  0|      | 1|     | 0  1  0|/  x\ |-1|     | 0 -1  0||  y|+| 1| >= 0| 0  0  1|\__z/ | 0|     | 0  0 -1|      | 0|     \ 0  0  0/      \ 1/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-1|\__z/ \ 0/

0

134 signed fixed<32,16>

eq134:l_6 [prop]
tau = 1
asap = 1

alap = 292

/ 1  0  0\      /-1\     |-1  0  0|      | 1|     | 0  1  0|/  x\ |-1|     | 0 -1  0||  y|+| 1| >= 0| 0  0  1|\__z/ | 0|     | 0  0 -1|      | 0|     \ 0  0  0/      \ 1/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

135 signed fixed<32,16>

eq135:l_7 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-1\     |-1  0  0|      | 1|     | 0  1  0|/  x\ |-1|     | 0 -1  0||  y|+| 1| >= 0| 0  0  1|\__z/ | 0|     | 0  0 -1|      | 0|     \ 0  0  0/      \ 1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+| 0|\__z/ \ 0/

0

136 signed fixed<32,16>

eq136:l_8 [prop]
tau = 1
asap = 1

alap = 295

/ 1  0  0\      /-1\     |-1  0  0|      | 1|     | 0  1  0|/  x\ |-1|     | 0 -1  0||  y|+| 1| >= 0| 0  0  1|\__z/ | 0|     | 0  0 -1|      | 0|     \ 0  0  0/      \ 1/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

137 signed fixed<32,16>

eq137:l_0 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /  -1\     |-1  0  0|      |   1|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-2|\__z/ \ 0/

0

138 signed fixed<32,16>

eq138:l_1 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /  -1\     |-1  0  0|      |   1|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-2|\__z/ \ 0/

0

139 signed fixed<32,16>

eq139:l_2 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /  -1\     |-1  0  0|      |   1|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-2|\__z/ \ 0/

0

140 signed fixed<32,16>

eq140:l_3 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /  -1\     |-1  0  0|      |   1|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-1|\__z/ \ 0/

0

141 signed fixed<32,16>

eq141:l_4 [prop]
tau = 0
asap = 0

alap = 297

/ 1  0  0\      /  -1\     |-1  0  0|      |   1|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-1|\__z/ \ 0/

0

142 signed fixed<32,16>

eq142:l_5 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /  -1\     |-1  0  0|      |   1|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-1|\__z/ \ 0/

0

143 signed fixed<32,16>

eq143:l_6 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /  -1\     |-1  0  0|      |   1|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-2|\__z/ \ 0/

0

144 signed fixed<32,16>

eq144:l_7 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /  -1\     |-1  0  0|      |   1|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-2|\__z/ \ 0/

0

145 signed fixed<32,16>

eq145:l_8 [prop]
tau = 0
asap = 0

alap = 295

/ 1  0  0\      /  -1\     |-1  0  0|      |   1|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ / 0\|  y|+|-2|\__z/ \ 0/

0

146 signed fixed<32,16>

eq146:l_0 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |  -1|     | 0 -1  0||  y|+|   1| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+| 0|\__z/ \ 0/

0

147 signed fixed<32,16>

eq147:l_1 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |  -1|     | 0 -1  0||  y|+|   1| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+| 0|\__z/ \ 0/

0

148 signed fixed<32,16>

eq148:l_2 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |  -1|     | 0 -1  0||  y|+|   1| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+| 0|\__z/ \ 0/

0

149 signed fixed<32,16>

eq149:l_3 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |  -1|     | 0 -1  0||  y|+|   1| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-1|\__z/ \ 0/

0

150 signed fixed<32,16>

eq150:l_4 [prop]
tau = 0
asap = 0

alap = 297

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |  -1|     | 0 -1  0||  y|+|   1| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-1|\__z/ \ 0/

0

151 signed fixed<32,16>

eq151:l_5 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |  -1|     | 0 -1  0||  y|+|   1| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-1|\__z/ \ 0/

0

152 signed fixed<32,16>

eq152:l_6 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |  -1|     | 0 -1  0||  y|+|   1| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+| 0|\__z/ \ 0/

0

153 signed fixed<32,16>

eq153:l_7 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |  -1|     | 0 -1  0||  y|+|   1| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+| 0|\__z/ \ 0/

0

154 signed fixed<32,16>

eq154:l_8 [prop]
tau = 0
asap = 0

alap = 295

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |  -1|     | 0 -1  0||  y|+|   1| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+| 0|\__z/ \ 0/

0

155 signed fixed<32,16>

eq155:l_0 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-2|\__z/ \ 0/

0

156 signed fixed<32,16>

eq156:l_1 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-2|\__z/ \ 0/

0

157 signed fixed<32,16>

eq157:l_2 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-2|\__z/ \ 0/

0

158 signed fixed<32,16>

eq158:l_3 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-1|\__z/ \ 0/

0

159 signed fixed<32,16>

eq159:l_4 [prop]
tau = 0
asap = 0

alap = 297

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-1|\__z/ \ 0/

0

160 signed fixed<32,16>

eq160:l_5 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-1|\__z/ \ 0/

0

161 signed fixed<32,16>

eq161:l_6 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-2|\__z/ \ 0/

0

162 signed fixed<32,16>

eq162:l_7 [prop]
tau = 0
asap = 0

alap = 292

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-1\|  y|+|-2|\__z/ \ 0/

0

163 signed fixed<32,16>

eq163:l_8 [prop]
tau = 0
asap = 0

alap = 295

/ 1  0  0\      /-512\     |-1  0  0|      | 512|     | 0  1  0|/  x\ |-512|     | 0 -1  0||  y|+| 512| >= 0| 0  0  1|\__z/ |   0|     | 0  0 -1|      |   0|     \ 0  0  0/      \   1/     
/  x\|  y|\__z/

/  x\ /-2\|  y|+|-2|\__z/ \ 0/

0

  

323 signed fixed<32,16>

eq321:eq_f_bopunroll0_0 mul
tau = 164
asap = 164
alap = 292

w = 5

r_fixed_multiplier[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

324 signed fixed<32,16>

eq322:eq_f_bopunroll0_1 mul
tau = 164
asap = 164
alap = 292

w = 5

r_fixed_multiplier[1]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

325 signed fixed<32,16>

eq323:eq_f_bopunroll0_2 mul
tau = 164
asap = 164
alap = 292

w = 5

r_fixed_multiplier[2]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

326 signed fixed<32,16>

eq324:eq_f_bopunroll0_3 mul
tau = 164
asap = 164
alap = 292

w = 5

r_fixed_multiplier[3]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

327 signed fixed<32,16>

eq325:eq_f_bopunroll0_4 [prop]
tau = 0
asap = 0

alap = 297

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

328 signed fixed<32,16>

eq326:eq_f_bopunroll0_5 mul
tau = 164
asap = 164
alap = 292

w = 5

r_fixed_multiplier[4]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

329 signed fixed<32,16>

eq327:eq_f_bopunroll0_6 mul
tau = 164
asap = 164
alap = 292

w = 5

r_fixed_multiplier[5]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

330 signed fixed<32,16>

eq328:eq_f_bopunroll0_7 mul
tau = 164
asap = 164
alap = 292

w = 5

r_fixed_multiplier[6]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

331 signed fixed<32,16>

eq329:eq_f_bopunroll0_8 mul
tau = 167
asap = 164
alap = 295

w = 5

r_fixed_multiplier[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/ 0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/ 0

  

/  x\|  y|\__z/ 0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

167 signed fixed<32,16>

eq167:hx_exsp3 sub
tau = 3
asap = 3

alap = 131
w = 1

r_sub_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

169 signed fixed<32,16>

eq169:hx_exsp5 add
tau = 4
asap = 4

alap = 132
w = 1

r_add_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

172 signed fixed<32,16>

eq172:hx shr
tau = 7
asap = 7

alap = 135
w = 0

__builtin_shr_3_signed_fixed_3\
2_16_[0]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

182 signed fixed<32,16>

eq182:r_tmp1_0_exsp0 sub
tau = 7
asap = 7

alap = 190
w = 1

r_sub_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

183 signed fixed<32,16>

eq183:r_tmp1_0_exsp1 shr
tau = 7
asap = 7

alap = 191
w = 0

__builtin_shr_3_signed_fixed_3\
2_16_[2]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

188 signed fixed<32,16>

eq188:r_tmp1_1_exsp0 sub
tau = 7
asap = 7

alap = 191
w = 1

r_sub_signed_fixed[1]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

189 signed fixed<32,16>

eq189:r_tmp1_1_exsp1 shr
tau = 7
asap = 7

alap = 192
w = 0

__builtin_shr_3_signed_fixed_3\
2_16_[4]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

193 signed fixed<32,16>

eq193:r_tmp1_2_exsp0 sub
tau = 7
asap = 7

alap = 191
w = 1

r_sub_signed_fixed[2]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

194 signed fixed<32,16>

eq194:r_tmp1_2_exsp1 shr
tau = 7
asap = 7

alap = 192
w = 0

__builtin_shr_3_signed_fixed_3\
2_16_[6]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/
0

198 signed fixed<32,16>

eq198:r_tmp1_3_exsp0 sub
tau = 7
asap = 7

alap = 191
w = 1

r_sub_signed_fixed[3]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

203 signed fixed<32,16>

eq203:r_tmp1_4_exsp0 sub
tau = 7
asap = 7

alap = 266
w = 1

r_sub_signed_fixed[4]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

207 signed fixed<32,16>

eq207:r_tmp1_5_exsp0 sub
tau = 7
asap = 7

alap = 192
w = 1

r_sub_signed_fixed[5]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

211 signed fixed<32,16>

eq211:r_tmp1_6_exsp0 shr
tau = 7
asap = 7

alap = 192
w = 0

__builtin_shr_3_signed_fixed_3\
2_16_[11]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

215 signed fixed<32,16>

eq215:r_tmp1_7_exsp0 shr
tau = 7
asap = 7

alap = 193
w = 0

__builtin_shr_3_signed_fixed_3\
2_16_[13]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

218 signed fixed<32,16>

eq218:r_tmp1_8_exsp0 shr
tau = 7
asap = 7

alap = 196
w = 0

__builtin_shr_3_signed_fixed_3\
2_16_[15]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

221 signed fixed<32,16>

eq221:r_tmp3_exsp0 abs
tau = 7
asap = 7

alap = 135
w = 1

r_abs_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

175 signed fixed<32,16>

eq175:hy_exsp2 sub
tau = 2
asap = 2

alap = 130
w = 1

r_sub_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

179 signed fixed<32,16>

eq179:hy_exsp6 add
tau = 5
asap = 5

alap = 133
w = 1

r_add_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

181 signed fixed<32,16>

eq181:hy shr
tau = 7
asap = 7

alap = 135
w = 0

__builtin_shr_3_signed_fixed_3\
2_16_[1]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

185 signed fixed<32,16>

eq185:r_tmp1_0_exsp3 sub
tau = 9
asap = 9

alap = 192
w = 1

r_sub_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

186 signed fixed<32,16>

eq186:r_tmp1_0_exsp4 shr
tau = 7
asap = 7

alap = 193
w = 0

__builtin_shr_3_signed_fixed_3\
2_16_[3]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

191 signed fixed<32,16>

eq191:r_tmp1_1_exsp3 shr
tau = 7
asap = 7

alap = 193
w = 0

__builtin_shr_3_signed_fixed_3\
2_16_[5]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

196 signed fixed<32,16>

eq196:r_tmp1_2_exsp3 shr
tau = 7
asap = 7

alap = 193
w = 0

__builtin_shr_3_signed_fixed_3\
2_16_[7]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

200 signed fixed<32,16>

eq200:r_tmp1_3_exsp2 sub
tau = 8
asap = 8

alap = 192
w = 1

r_sub_signed_fixed[3]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

201 signed fixed<32,16>

eq201:r_tmp1_3_exsp3 shr
tau = 7
asap = 7

alap = 193
w = 0

__builtin_shr_3_signed_fixed_3\
2_16_[8]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

205 signed fixed<32,16>

eq205:r_tmp1_4_exsp2 shr
tau = 7
asap = 7

alap = 267
w = 0

__builtin_shr_3_signed_fixed_3\
2_16_[9]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

209 signed fixed<32,16>

eq209:r_tmp1_5_exsp2 shr
tau = 7
asap = 7

alap = 193
w = 0

__builtin_shr_3_signed_fixed_3\
2_16_[10]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

212 signed fixed<32,16>

eq212:r_tmp1_6_exsp1 sub
tau = 7
asap = 7

alap = 192
w = 1

r_sub_signed_fixed[6]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

213 signed fixed<32,16>

eq213:r_tmp1_6_exsp2 shr
tau = 7
asap = 7

alap = 193
w = 0

__builtin_shr_3_signed_fixed_3\
2_16_[12]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

216 signed fixed<32,16>

eq216:r_tmp1_7_exsp1 shr
tau = 7
asap = 7

alap = 193
w = 0

__builtin_shr_3_signed_fixed_3\
2_16_[14]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

219 signed fixed<32,16>

eq219:r_tmp1_8_exsp1 shr
tau = 7
asap = 7

alap = 196
w = 0

__builtin_shr_3_signed_fixed_3\
2_16_[16]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

222 signed fixed<32,16>

eq222:r_tmp3_exsp1 abs
tau = 7
asap = 7

alap = 135
w = 1

r_abs_signed_fixed[1]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

184 signed fixed<32,16>

eq184:r_tmp1_0_exsp2 sub
tau = 8
asap = 8

alap = 191
w = 1

r_sub_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

187 signed fixed<32,16>

eq187:r_tmp1_0 sub
tau = 10

asap = 10
alap = 193

w = 1

r_sub_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

247 signed fixed<32,16>

eq245:r_tmp2_0 mul
tau = 11

asap = 11
alap = 194

w = 5

r_fixed_multiplier[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

/  x\|  y|\__z/

1

  

190 signed fixed<32,16>

eq190:r_tmp1_1_exsp2 sub
tau = 8
asap = 8

alap = 192
w = 1

r_sub_signed_fixed[1]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

192 signed fixed<32,16>

eq192:r_tmp1_1 sub
tau = 9
asap = 9

alap = 193
w = 1

r_sub_signed_fixed[1]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

248 signed fixed<32,16>

eq246:r_tmp2_1 mul
tau = 10

asap = 10
alap = 194

w = 5

r_fixed_multiplier[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0/  x\|  y|\__z/

1

  

195 signed fixed<32,16>

eq195:r_tmp1_2_exsp2 sub
tau = 8
asap = 8

alap = 192
w = 1

r_sub_signed_fixed[2]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

197 signed fixed<32,16>

eq197:r_tmp1_2 add
tau = 9
asap = 9

alap = 193
w = 1

r_add_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

249 signed fixed<32,16>

eq247:r_tmp2_2 mul
tau = 10

asap = 10
alap = 194

w = 5

r_fixed_multiplier[1]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0/  x\|  y|\__z/

1

  

199 signed fixed<32,16>

eq199:r_tmp1_3_exsp1 shr
tau = 8
asap = 8

alap = 192
w = 0

__builtin_shr_3_signed_fixed_3\
2_16_[0]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

202 signed fixed<32,16>

eq202:r_tmp1_3 sub
tau = 9
asap = 9

alap = 193
w = 1

r_sub_signed_fixed[2]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

250 signed fixed<32,16>

eq248:r_tmp2_3 mul
tau = 10

asap = 10
alap = 194

w = 5

r_fixed_multiplier[2]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

/  x\|  y|\__z/

1

  

204 signed fixed<32,16>

eq204:r_tmp1_4_exsp1 shr
tau = 8
asap = 8

alap = 267
w = 0

__builtin_shr_3_signed_fixed_3\
2_16_[1]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

206 signed fixed<32,16>

eq206:r_tmp1_4 sub
tau = 8
asap = 8

alap = 267
w = 1

r_sub_signed_fixed[4]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0   

/  x\|  y|\__z/

1

  

251 signed fixed<32,16>

eq249:r_tmp2_4 mul
tau = 9
asap = 9

alap = 268
w = 5

r_fixed_multiplier[1]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

/  x\|  y|\__z/

1

  

208 signed fixed<32,16>

eq208:r_tmp1_5_exsp1 shr
tau = 8
asap = 8

alap = 193
w = 0

__builtin_shr_3_signed_fixed_3\
2_16_[2]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

210 signed fixed<32,16>

eq210:r_tmp1_5 add
tau = 8
asap = 8

alap = 193
w = 1

r_add_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

252 signed fixed<32,16>

eq250:r_tmp2_5 mul
tau = 9
asap = 9

alap = 194
w = 5

r_fixed_multiplier[2]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

214 signed fixed<32,16>

eq214:r_tmp1_6 sub
tau = 8
asap = 8

alap = 193
w = 1

r_sub_signed_fixed[5]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

253 signed fixed<32,16>

eq251:r_tmp2_6 mul
tau = 9
asap = 9

alap = 194
w = 5

r_fixed_multiplier[3]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

/  x\|  y|\__z/

1

  

217 signed fixed<32,16>

eq217:r_tmp1_7 sub
tau = 7
asap = 7

alap = 193
w = 1

r_sub_signed_fixed[7]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

254 signed fixed<32,16>

eq252:r_tmp2_7 mul
tau = 8
asap = 8

alap = 194
w = 5

r_fixed_multiplier[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

/  x\|  y|\__z/

1

  

220 signed fixed<32,16>

eq220:r_tmp1_8 add
tau = 7
asap = 7

alap = 196
w = 1

r_add_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

255 signed fixed<32,16>

eq253:r_tmp2_8 mul
tau = 8
asap = 8

alap = 197
w = 5

r_fixed_multiplier[1]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

/  x\|  y|\__z/

1

  

223 signed fixed<32,16>

eq223:r_tmp3_exsp2 add
tau = 8
asap = 8

alap = 136
w = 1

r_add_signed_fixed[1]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

224 signed fixed<32,16>

eq224:r_tmp3 mul
tau = 9
asap = 9

alap = 137
w = 5

r_fixed_multiplier[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

225 boolean

eq225:r_tmp3_zero lt
tau = 14

asap = 14
alap = 198

w = 1

r_comp_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

226 signed fixed<32,16>

eq226:r_tmp6 div
tau = 14

asap = 14
alap = 142

w = 56

r_div_8_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

  

228 signed fixed<32,16>

eq228:r_tmp4 [merge]
tau = 71

asap = 71
alap = 199

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

258 signed fixed<32,16>

eq256:r_tmp5_0 [merge]
tau = 99
asap = 99
alap = 227

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

261 signed fixed<32,16>

eq259:r_tmp5_1 [merge]
tau = 99
asap = 99
alap = 227

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

264 signed fixed<32,16>

eq262:r_tmp5_2 [merge]
tau = 99
asap = 99
alap = 227

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

267 signed fixed<32,16>

eq265:r_tmp5_3 [merge]
tau = 99
asap = 99
alap = 227

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

270 signed fixed<32,16>

eq268:r_tmp5_4 [merge]
tau = 99
asap = 99
alap = 301

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

273 signed fixed<32,16>

eq271:r_tmp5_5 [merge]
tau = 99
asap = 99
alap = 227

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

276 signed fixed<32,16>

eq274:r_tmp5_6 [merge]
tau = 99
asap = 99
alap = 227

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

279 signed fixed<32,16>

eq277:r_tmp5_7 [merge]
tau = 99
asap = 99
alap = 227

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

282 signed fixed<32,16>

eq280:r_tmp5_8 [merge]
tau = 102
asap = 99
alap = 230

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

227 signed fixed<32,16>

eq227:r_tmp4_else0 sub
tau = 70
asap = 70
alap = 198

w = 1

r_sub_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

2

  

256 signed fixed<32,16>

eq254:r_tmp5_0_else0_exsp0 mul
tau = 71

asap = 71
alap = 199

w = 5

r_fixed_multiplier[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

259 signed fixed<32,16>

eq257:r_tmp5_1_else0_exsp0 mul
tau = 71

asap = 71
alap = 199

w = 5

r_fixed_multiplier[1]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

262 signed fixed<32,16>

eq260:r_tmp5_2_else0_exsp0 mul
tau = 71

asap = 71
alap = 199

w = 5

r_fixed_multiplier[2]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

265 signed fixed<32,16>

eq263:r_tmp5_3_else0_exsp0 mul
tau = 71

asap = 71
alap = 199

w = 5

r_fixed_multiplier[3]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

268 signed fixed<32,16>

eq266:r_tmp5_4_else0_exsp0 mul
tau = 71

asap = 71
alap = 273

w = 5

r_fixed_multiplier[4]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

271 signed fixed<32,16>

eq269:r_tmp5_5_else0_exsp0 mul
tau = 71

asap = 71
alap = 199

w = 5

r_fixed_multiplier[5]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

274 signed fixed<32,16>

eq272:r_tmp5_6_else0_exsp0 mul
tau = 71

asap = 71
alap = 199

w = 5

r_fixed_multiplier[6]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

277 signed fixed<32,16>

eq275:r_tmp5_7_else0_exsp0 mul
tau = 71

asap = 71
alap = 199

w = 5

r_fixed_multiplier[7]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

280 signed fixed<32,16>

eq278:r_tmp5_8_else0_exsp0 mul
tau = 74

asap = 71
alap = 202

w = 5

r_fixed_multiplier[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

  

229 signed fixed<32,16>

eq229:a_tmp1_exsp0 add
tau = 99
asap = 99
alap = 227

w = 1

r_add_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

231 signed fixed<32,16>

eq231:a_tmp1_exsp2 add
tau = 100
asap = 100
alap = 228

w = 1

r_add_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

230 signed fixed<32,16>

eq230:a_tmp1_exsp1 add
tau = 99
asap = 99
alap = 227

w = 1

r_add_signed_fixed[1]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

  

235 signed fixed<32,16>

eq235:a_tmp1_exsp6 add
tau = 101
asap = 101
alap = 229

w = 1

r_add_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

232 signed fixed<32,16>

eq232:a_tmp1_exsp3 add
tau = 99
asap = 99
alap = 227

w = 1

r_add_signed_fixed[2]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

234 signed fixed<32,16>

eq234:a_tmp1_exsp5 add
tau = 100
asap = 100
alap = 228

w = 1

r_add_signed_fixed[1]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

233 signed fixed<32,16>

eq233:a_tmp1_exsp4 add
tau = 99
asap = 99
alap = 227

w = 1

r_add_signed_fixed[3]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

1

  

236 signed fixed<32,16>

eq236:a_tmp1_exsp7 add
tau = 102
asap = 102
alap = 230

w = 1

r_add_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

237 signed fixed<32,16>

eq_a_tmp1:a_tmp1 div
tau = 103
asap = 103
alap = 231

w = 56

r_div_8_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

  

292 signed fixed<32,16>

eq290:a_tmp2_0 mul
tau = 159
asap = 159
alap = 287

w = 5

r_fixed_multiplier[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

294 signed fixed<32,16>

eq292:a_tmp2_1 mul
tau = 159
asap = 159
alap = 287

w = 5

r_fixed_multiplier[1]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

295 signed fixed<32,16>

eq293:a_tmp2_2 mul
tau = 159
asap = 159
alap = 287

w = 5

r_fixed_multiplier[2]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

297 signed fixed<32,16>

eq295:a_tmp2_3 mul
tau = 159
asap = 159
alap = 287

w = 5

r_fixed_multiplier[3]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

298 signed fixed<32,16>

eq296:a_tmp2_4 shl
tau = 159
asap = 159
alap = 301

w = 0

__builtin_shl_2_signed_fixed_3\
2_16_[0]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

300 signed fixed<32,16>

eq298:a_tmp2_5 mul
tau = 159
asap = 159
alap = 287

w = 5

r_fixed_multiplier[4]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

301 signed fixed<32,16>

eq299:a_tmp2_6 mul
tau = 159
asap = 159
alap = 287

w = 5

r_fixed_multiplier[5]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/ 1

303 signed fixed<32,16>

eq301:a_tmp2_7 mul
tau = 159
asap = 159
alap = 287

w = 5

r_fixed_multiplier[6]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

304 signed fixed<32,16>

eq302:a_tmp2_8 mul
tau = 159
asap = 159
alap = 290

w = 5

r_fixed_multiplier[7]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

  

238 signed fixed<32,16>

eq237:f_exsp0 add
tau = 169
asap = 169
alap = 297

w = 1

r_add_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

240 signed fixed<32,16>

eq239:f_exsp2 add
tau = 170
asap = 170
alap = 298

w = 1

r_add_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

239 signed fixed<32,16>

eq238:f_exsp1 add
tau = 169
asap = 169
alap = 297

w = 1

r_add_signed_fixed[1]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

  

244 signed fixed<32,16>

eq243:f_exsp6 add
tau = 171
asap = 171
alap = 299

w = 1

r_add_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

241 signed fixed<32,16>

eq240:f_exsp3 add
tau = 169
asap = 169
alap = 297

w = 1

r_add_signed_fixed[2]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/ 243 signed fixed<32,16>

eq242:f_exsp5 add
tau = 170
asap = 170
alap = 298

w = 1

r_add_signed_fixed[1]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

242 signed fixed<32,16>

eq241:f_exsp4 add
tau = 169
asap = 169
alap = 297

w = 1

r_add_signed_fixed[3]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

1

  

245 signed fixed<32,16>

eq_f:f add
tau = 172
asap = 172
alap = 300

w = 1

r_add_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

246 signed integer<18>

eq244:f_out _cast
tau = 174
asap = 0

alap = 300
w = 1

r_cast_signed_fixed_to_signed_\
integer[0]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/1 0 0\ /  x\ /-1\\0 1 0/ |  y|+\-1/        \__z/      

/  x\|  y|\__z/

0

  

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  257 signed fixed<32,16>

eq255:r_tmp5_0_else0 exp
tau = 76

asap = 76
alap = 204

w = 23

r_exp_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

2

  

283 signed fixed<32,16>

eq281:r_0 [prop]
tau = 99
asap = 99
alap = 227

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0
  

260 signed fixed<32,16>

eq258:r_tmp5_1_else0 exp
tau = 76

asap = 76
alap = 204

w = 23

r_exp_signed_fixed[1]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

2

  

284 signed fixed<32,16>

eq282:r_1 [prop]
tau = 99
asap = 99
alap = 227

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

263 signed fixed<32,16>

eq261:r_tmp5_2_else0 exp
tau = 76

asap = 76
alap = 204

w = 23

r_exp_signed_fixed[2]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

2

  

285 signed fixed<32,16>

eq283:r_2 [prop]
tau = 99
asap = 99
alap = 227

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

266 signed fixed<32,16>

eq264:r_tmp5_3_else0 exp
tau = 76

asap = 76
alap = 204

w = 23

r_exp_signed_fixed[3]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

2

  

289 signed fixed<32,16>

eq287:r_6 [prop]
tau = 99
asap = 99
alap = 227

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

269 signed fixed<32,16>

eq267:r_tmp5_4_else0 exp
tau = 76

asap = 76
alap = 278

w = 23

r_exp_signed_fixed[4]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

2

  

  

272 signed fixed<32,16>

eq270:r_tmp5_5_else0 exp
tau = 76

asap = 76
alap = 204

w = 23

r_exp_signed_fixed[5]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

2

  

290 signed fixed<32,16>

eq288:r_7 [prop]
tau = 99
asap = 99
alap = 227

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

275 signed fixed<32,16>

eq273:r_tmp5_6_else0 exp
tau = 76

asap = 76
alap = 204

w = 23

r_exp_signed_fixed[6]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

2

  

286 signed fixed<32,16>

eq284:r_3 [prop]
tau = 99
asap = 99
alap = 227

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

278 signed fixed<32,16>

eq276:r_tmp5_7_else0 exp
tau = 76

asap = 76
alap = 204

w = 23

r_exp_signed_fixed[7]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

2

  

287 signed fixed<32,16>

eq285:r_4 [prop]
tau = 99
asap = 99
alap = 227

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

281 signed fixed<32,16>

eq279:r_tmp5_8_else0 exp
tau = 79
asap = 76
alap = 207

w = 23

r_exp_signed_fixed[0]
/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     

/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

2

  

288 signed fixed<32,16>

eq286:r_5 [prop]
tau = 102
asap = 99
alap = 230

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

314 signed fixed<32,16>

eq312:eq_a_tmp1_bopunroll0_0 [prop]
tau = 99
asap = 99
alap = 227

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

293 signed fixed<32,16>

eq291:a_tmp2_1_exsp0 shl
tau = 99
asap = 99
alap = 287

w = 0

__builtin_shl_1_signed_fixed_3\
2_16_[0]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/ 0

315 signed fixed<32,16>

eq313:eq_a_tmp1_bopunroll0_1 shl
tau = 99
asap = 99
alap = 227

w = 0

__builtin_shl_1_signed_fixed_3\
2_16_[4]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

316 signed fixed<32,16>

eq314:eq_a_tmp1_bopunroll0_2 [prop]
tau = 99
asap = 99
alap = 227

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

320 signed fixed<32,16>

eq318:eq_a_tmp1_bopunroll0_6 [prop]
tau = 99
asap = 99
alap = 227

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

302 signed fixed<32,16>

eq300:a_tmp2_7_exsp0 shl
tau = 99
asap = 99
alap = 287

w = 0

__builtin_shl_1_signed_fixed_3\
2_16_[3]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

321 signed fixed<32,16>

eq319:eq_a_tmp1_bopunroll0_7 shl
tau = 99
asap = 99
alap = 227

w = 0

__builtin_shl_1_signed_fixed_3\
2_16_[7]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

322 signed fixed<32,16>

eq320:eq_a_tmp1_bopunroll0_8 [prop]
tau = 102
asap = 99
alap = 230

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

296 signed fixed<32,16>

eq294:a_tmp2_3_exsp0 shl
tau = 99
asap = 99
alap = 287

w = 0

__builtin_shl_1_signed_fixed_3\
2_16_[1]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

317 signed fixed<32,16>

eq315:eq_a_tmp1_bopunroll0_3 shl
tau = 99
asap = 99
alap = 227

w = 0

__builtin_shl_1_signed_fixed_3\
2_16_[5]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

299 signed fixed<32,16>

eq297:a_tmp2_5_exsp0 shl
tau = 99
asap = 99
alap = 287

w = 0

__builtin_shl_1_signed_fixed_3\
2_16_[2]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

319 signed fixed<32,16>

eq317:eq_a_tmp1_bopunroll0_5 shl
tau = 99
asap = 99
alap = 227

w = 0

__builtin_shl_1_signed_fixed_3\
2_16_[6]

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

291 signed fixed<32,16>

eq289:r_8 [prop]
tau = 1
asap = 0

alap = 301

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

  

305 signed fixed<32,16>

eq303:a_0 [prop]
tau = 164
asap = 164
alap = 292

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

306 signed fixed<32,16>

eq304:a_1 [prop]
tau = 164
asap = 164
alap = 292

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

307 signed fixed<32,16>

eq305:a_2 [prop]
tau = 164
asap = 164
alap = 292

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

311 signed fixed<32,16>

eq309:a_6 [prop]
tau = 164
asap = 164
alap = 292

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

  

/  x\|  y|\__z/

0

  

312 signed fixed<32,16>

eq310:a_7 [prop]
tau = 164
asap = 164
alap = 292

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

308 signed fixed<32,16>

eq306:a_3 [prop]
tau = 164
asap = 164
alap = 292

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

0

  

309 signed fixed<32,16>

eq307:a_4 [prop]
tau = 164
asap = 164
alap = 292

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

310 signed fixed<32,16>

eq308:a_5 [prop]
tau = 164
asap = 164
alap = 295

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

1

  

313 signed fixed<32,16>

eq311:a_8 [prop]
tau = 2
asap = 0

alap = 301

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

318 signed fixed<32,16>

eq316:eq_a_tmp1_bopunroll0_4 [prop]
tau = 0
asap = 0

alap = 227

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     | 1  0  0||  y|+| -1| >= 0| 0  1  0|\__z/ | -1|     |-1  0  0|      |512|     \ 0 -1  0/      \512/     
/  x\|  y|\__z/

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

0

  

/  x\|  y|\__z/

1

  

/  x\|  y|\__z/

1

  

332 signed integer<18>

g_in [input]
tau = 0
asap = 0

alap = 301

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     |-1  0  0||  y|+|511| >= 0| 0 -1  0|\__z/ |511|     | 1  0  0|      |  0|     \ 0  1  0/      \  0/     
/1 0 0\ /  x\\0 1 0/ |  y|        \__z/

/1 0 0\ /  x\\0 1 0/ |  y|        \__z/

0

  

333 signed integer<18>

l_in [input]
tau = 0
asap = 0

alap = 301

/ 0  0  1\      /  0\     | 0  0 -1|/  x\ |  0|     |-1  0  0||  y|+|511| >= 0| 0 -1  0|\__z/ |511|     | 1  0  0|      |  0|     \ 0  1  0/      \  0/     
/1 0 0\ /  x\\0 1 0/ |  y|        \__z/

/1 0 0\ /  x\\0 1 0/ |  y|        \__z/

0

  

334 const unsigned integer<1>

1

  

1

  

335 const unsigned integer<1>

1

  

1

  

336 const unsigned integer<2>

3

  

1

  

337 const unsigned integer<1>

1

  

1

  

338 const unsigned integer<1>

1

  

1

  

339 const unsigned integer<2>

3

  

1

  

340 const unsigned integer<2>

1

  

1

  

341 const unsigned integer<2>

1

  

1

  

342 const unsigned integer<2>

1

  

1

  

343 const unsigned integer<2>

1

  

1

  

344 const unsigned integer<2>

1

  

1

  

345 const unsigned integer<2>

1

  

1

  

346 const unsigned integer<2>

1

  

1

  

347 const unsigned integer<2>

1

  

1

  

348 const unsigned integer<2>

1

  

1

  

349 const unsigned integer<2>

1

  

1

  

350 const unsigned integer<2>

1

  

1

  

351 const unsigned integer<2>

1

  

1

  

352 const unsigned integer<2>

1   

1

  

353 const unsigned integer<2>

1

  

1

  

354 const unsigned integer<2>

1

  

1

  

355 const unsigned integer<2>

1

  

1

  

356 const unsigned integer<2>

1

  

1

  

357 const unsigned integer<2>

1

  

1

  
358 signed fixed<32,16>

2.8524

  

1   

359 signed fixed<32,16>

0.001

  

1

  

360 signed fixed<32,16>

1

  

0

  

361 signed fixed<32,16>

0

  

1

  

362 signed fixed<32,16>

1

  

0

  

363 signed fixed<32,16>

0

  

1

  

364 signed fixed<32,16>

0

  

1

  365 signed fixed<32,16>

0   
1

  

366 signed fixed<32,16>

0

  1

  

367 signed fixed<32,16>

0
  

1

  

368 signed fixed<32,16>

0

  

1

  

369 signed fixed<32,16>

0

  

1

  370 signed fixed<32,16>

0
  

1

  

371 signed fixed<32,16>

0

  

1

  

372 signed fixed<32,16>

1

  

0

  

373 const unsigned integer<1>

1

  

1

  

374 const unsigned integer<1>

1

  

1

  

375 const unsigned integer<2>

2

  
1

  

376 const unsigned integer<1>

1

  

1

  

377 const unsigned integer<1>

1

  

1

  

378 signed fixed<32,16>

1

  

0

  

379 const unsigned integer<1>

1
  

1
  

380 const unsigned integer<1>

1

  
1

  

381 signed fixed<32,16>

4

  

0

  

382 const unsigned integer<1>

1

  

1

  

383 const unsigned integer<1>

1

  1

  

384 pseudo

__pseudo START node__
tau = 0
asap = 0

alap = 128

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Figure 5.14: Reduced dependence graph of filter kernel, automatically generated by
the PARO design system.

made that a filter can be synthesized with a clock frequency of 100 MHz leading to
an iteration interval of P = 2 for filter0. That means, in every second cycle, a new
pixel has to be processed by filter0. The data streams row by row into the array, thus
an appropriate LSGP partitioning scheme has been chosen. Since divisions, expo­
nential functions, and multiplications are very costly in hardware, the corresponding
functional units should be shared as much as possible. The 35 multiplications in Ta­
ble 5.8 have to be performed within two cycles. In the ideal case, this can be achieved
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5. Experiments and Evaluation

with an allocation of ⌈35/2⌉ = 18 multipliers that can start a new operation in each
cycle. Likewise, a divider should be chosen that can start a new operation at each
cycle, which is sufficient for computing the two divisions within the filter kernel.

In filter1, only a quarter of the pixels have to be processed. Therefore, the it­
eration interval can be quadrupled to P = 8 and the number of resources can be
reduced. For instance, one divider, that can start a new operation in every second
cycle, and five multipliers are sufficient.

The different allocations for each filter are given in Table 5.9. The execution
times w and pipeline rates δ of the functional units are also given. Scheduling and
synthesis is as easy as changing the parameters of Table 5.9 within the allocation
section of the program.

Table 5.10: Results for each filter.

Filter P local latency solving time parallel iterations

filter0 2 169 2.1 sec 85
filter1 8 177 3.2 sec 23
filter2 32 175 2.9 sec 6
filter3 128 175 6.9 sec 2
filter4 512 175 23.1 sec 1
filter5 2048 175 88.0 sec 1

The solution times and scheduling results are shown in Table 5.10. For each
of the first four filters filter0 to filter3 an optimal schedule was found in less than
ten seconds. For larger iteration intervals (P = 512 and P = 2048), a schedule was
found in 23 and 88 seconds, respectively. Here, the possible scheduling window is
significantly larger than the derived local latency of 175 cycles. The last column of
the table denotes the number of iterations that run simultaneously at the same time.
For example, filter0 processes a new pixel in every second cycle but because of the
long execution times of the complex operations, local latency amounts to 169 cycles.
That is, computations from ⌈169/2⌉ = 85 iterations are executed in parallel.

5.8 Summary

In this chapter, the new scheduling techniques presented in Chapter 3 have been
evaluated in several experiments, ranging from small descriptive examples of several
selected algorithms from benchmarks to a complex real world case study.

The proposed sequentialization constraints have been quantitatively compared to
an existing method. Here, already few randomly selected examples demonstrate an
improvement of up to 39% in execution time (latency of the found solution).
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Summary

Examples for predicated as well as conditional execution have been presented.
For the first time, scheduling with register and channel constraints for WPPAs has
been demonstrated for descriptive examples. Here, also the corresponding VLIW
programs (target code) have been presented.

Afterwards, the full application of the PARO synthesis tool has been demon­
strated, where more than 25 well­known benchmark algorithms have been scheduled
and synthesized. The complexity of the corresponding RDGs ranged from dozens
to more than 150 nodes. An optimal schedule could be derived within seconds.

It has been shown in Section 5.6 that the proposed array approach (loop parti­
tioning) is extremely powerful, when compared with loop unrolling. The usage of
the same design tool (PARO) enabled, for the first time, a fair quantitative evaluation
of the two approaches for a set of computationally intensive algorithms. Because of
its regularity and the possible clustering of resources into several processing elements,
the processor array approach achieves a far better throughput, of up to 42% more
compared with loop unrolling in all experiments for FPGA targets. For the cost and
power metrics, it can be noted that the loop unrolling results are better for smaller
designs whereas for larger designs, the processor array approach achieves smaller cost
and power values.

Finally, a complex (RDG with 384 nodes and 633 edges) real world application
for image processing has been presented. Moderate times for finding optimal sched­
ules that interleave operations from up to 85 iterations simultaneously, demonstrate
the applicability, even also for very complex examples.
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6Chapter 6
Conclusions and Future Work

In this chapter, the key contributions of this thesis are briefly summarized. Further­
more, directions of future work in this important research area are outlined.

6.1 Summary

This monograph has presented novel contributions in the areas of modeling and
resource­constrained scheduling for nested loop programs.

More specific, a new class of algorithms called dynamic piecewise linear algorithms
and a corresponding graph representation for modeling iterative, multi­dimensional
data flow has been presented in the thesis. This class of dynamic piecewise lin­
ear algorithms extends well­known models, that are based on systems of recurrence
equations, defined over polyhedral iteration domains. Its novel extension enables the
modeling of a specific type of dynamic data dependencies arising in many important
algorithm classes that existing loop parallelizers were just not able to handle. By this
enhancement, the range of applications with multi­dimensional data flow, that can
be parallelized and mapped onto massively parallel processor arrays, is significantly
increased. For instance, a lot of computationally intensive applications for video and
image processing, which consist of nested loop programs with only few and sim­
ple run­time dependent conditions, are now parallelizable and mappable to either
dedicated hardware accelerators or tightly­coupled, programmable processor arrays.

On the basis of the class of dynamic piecewise linear algorithms, the language
PAULA has been introduced. It allows modeling dataflow­intensive applications. It
is intended for designing highly parallel algorithms at instruction, data, and loop­
level parallelism. The PAULA language permits very compact and efficient behav­
ioral descriptions and serves as design entry when generating dedicated hardware ac­
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celerators, or might be used as high­level programming language for tightly­coupled
multi­processor architectures. The language covers a broad range of applications
from the areas of digital image, video and other signal processing, linear algebra,
cryptography, and many other scientific computing domains where efficient paral­
lelization techniques and hardware accelerators are indispensable. The intention was
not to propagate a new parallel programming language but to have one specially tai­
lored for the concepts described in the thesis. It should be noted that the proposed
language features may also be expressed in a ’C­like’ or any other high­level program­
ming language. But, in order to not mislead a programmer, the catalog of restrictions
and modifications would be as long as the description of the PAULA language itself.

Exact and holistic scheduling techniques have been developed, that incorporate
both, the local allocation and one or more levels of global allocation. By this close
integration, performance­optimal schedules (in terms of throughput and overall ex­
ecution time of an algorithm) are derived. In order to obtain these schedules, an
approach based on mixed integer programming has been developed. For the first
time, the local schedule as well as the global schedule for possibly several levels of
partitioning is optimized at the same time. In this context, a new serialization con­
straint has been presented that leads to better schedules (up to 39%) than existing
approaches. The second main contribution in the area of scheduling has been the
formulation of resource constraints that take the mutual exclusivity of iteration de­
pendent conditions as well as of run­time dependent conditions into account. In
addition, the MIP­based techniques have been extended by further constraints to
cope with the constraints induced by a given fixed programmable processor array
(WPPA). These constraints consider local register constraints within the processors
and channel constraints of the communication structure.

Several experimental results demonstrate the strength of the proposed methods.
Here, more than 25 selected algorithms have been scheduled and synthesized au­
tomatically as test cases. The complexity of the corresponding RDGs ranged from
dozens to more than 150 nodes. In each case, an optimal schedule was derived within
seconds.

The powerfulness of the proposed array approach (loop partitioning) compared
with loop unrolling has been demonstrated. For the first time, the usage of the same
design tool (PARO) enabled a fair, quantitative evaluation of the two approaches
for a set of computationally intensive algorithms. Because of its regularity and the
clustering of resources into several processing elements, the processor array approach
achieves in all experiments a far better throughput, up to 42% more compared with
loop unrolling. For the cost and power metrics, it can be noted, that for smaller
designs, the loop unrolling results are better, whereas, for larger designs, the processor
array approach is better.
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Finally, a complex (RDG with 384 nodes and 633 edges) real world application
from the area of image processing has been presented. Moderate times for finding
optimal schedules, which interleave operations from up to 85 iterations simultane­
ously, demonstrate the applicability, also for very complex examples.

Thanks to the modularity of the proposed scheduling techniques, the method­
ology can be easily extended to cope with further architectural properties. For in­
stance, in [SMHT08], we extended the approach to processor arrays with subword
parallelism.

6.2 Future Work Directions

The contributions in the area of modeling and languages, scheduling, and target
code generation pave the way for a multitude of further works.

One important field of activity is the integration of accelerators into a system­on­
a­chip and the communication with other accelerators. Concerning the system in­
tegration, different solutions are possible. For instance, a tight coupling via registers
or a loosely­coupled integration using FIFOs or addressable buffer memories can be
considered. The latter concept is needed when partitioning data into several chunks
and transporting them to local memories of the accelerator. The main challenges
in this scenario are the generation of adequate address generators and rate­matched
scheduling of operations within the processor array and communication resources.
From the modeling perspective, such communication primitives could be fairly easily
integrated into the PAULA language.

In the case of communicating loops (accelerators), modeling can be done, for
example, by the concept of a task graph, where each task denotes one loop program.
Finding appropriate transformations for each loop program, in order to maximize
the overall performance or to minimize intermediate memories, can lead to a difficult
exploration problem.

Another exciting research topic might be the development of a symbolic design
methodology. Such a methodology could be especially beneficial when consider­
ing dynamically reconfigurable or programmable architectures such as WPPAs. For
instance, a symbolic mapping in dependence on the number of available proces­
sors would lead to a reduction of configuration memory and may also decrease the
time in order react on resource changes or failures. The implementation of such a
symbolic design methodology requires appropriate symbolic linear algebra methods
(for example as provided in Maple [Hec93]) and methods for determining symbolic
schedules. Here, for instance, parametric integer programming (PIP) [Fea88] might be
applied. However, the performance of PIP, compared with commercial solvers, such
as CPLEX, is restricted. Furthermore, because of different parameter combinations,
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a state explosion can happen and might lead to an intractable problem. Nevertheless,
for one­dimensional arrays (one parameter), projections as allocation, or rectangular
tile shapes, the proposed approach might lead to promising solutions.
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AAppendix A
Linear Programming

At this place, only a short introduction to linear programming is given. For an
elaborate study, we refer, for instance, to the following textbooks, [HL95, Mur81,
PS82, Sch86].

A.1 Linear Programming in a Nutshell

Linear programming (LP) is a mathematical technique for optimizing a linear func­
tion. This objective function is subject to a set of linear inequalities.

min cTx c , x ∈Rn

subject to Ax ≥ b A∈Rm×n, b ∈Rm

x ≥ 0

Commonly, the above representation is called the primary problem or the canonical
form of linear programming. Herein, x is a vector of variables that have to be de­
termined. The matrix A and the vectors b and c are known coefficients. The term
cTx is called objective function and can be either minimized or maximized. The
inequalities Ax ≥ b are the constraints, which represent the intersection of m half­
spaces and thus specify a convex polyhedron over which the objective function is to
be optimized. The matrix A is typically not square since in that case a linear program
could be easily solved by inverting matrix A, if A has full rank. Usually, the matrix A
has more columns than rows, that is, Ax ≥ b is most times highly under­determined,
which offers a lot of optimization freedom.

As illustration of the optimization procedure, consider once again the problem
in form of a convex polyhedron. It can be easily imagined, when traversing the hull
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x1

x2

search space

ILP solution

LP solution

rounded value of the LP solution

decreasing cost

Figure A.1: A hypothetical example of an integer linear optimization problem (from
[PS82]).

of the polyhedron, that the optimal solution must correspond to one of the vertices
of the polyhedron.

One efficient technique for solving linear programs goes back to the 1940s and
is called simplex method. Briefly described, this method selects a number of sub­
matrices of A and solves them for x. In this way, the solution successively is im­
proved until no more advancement can be made. Another group of algorithms for
solving linear programs are the so­called Karmarkar and barrier methods. They are
especially suited for solving high dimensional optimization problems. The methods
share the characteristic that an optimal solution is found by traversing the interior of
the feasible region whereas the simplex method investigates only the vertices.

Every primary problem (as defined above) can be converted into a so­called dual
problem, which is defined as follows.

max b Ty y ∈Rm

subject to ATy ≤ c

y ≥ 0
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In the dual problem y is used instead of x as the variable vector. A main result of
this duality is that every feasible solution for a linear program gives a bound on the
optimal value of the objective function of its dual problem. Likewise, if the primary
problem is unbounded then the dual problem is infeasible and vice versa.

If all variables of the program are required to be integral, the problem is called an
integer linear program (ILP) problem. On the first view, ILP problems do not seem
harder to solve than conventional linear programs. One could think of it as to solve
a corresponding linear program and to round the solution to the next integral point.
This approach works to some extent, especially for large objective values. However,
the difficulties that might arise are illustrated in Figure A.1.

Often, integer constraints are used to model combinatorial conditions or nonlin­
ear constraints. In contrast to linear programming, which can be solved efficiently in
the worst case, integer programming problems are in general NP­hard. The special
case when the variables are required to be either 0 or 1 is called 0­1 integer program­
ming or binary integer programming (BIP). If a problem contains both real and inte­
ger variables it is called a mixed integer linear programming (MILP) or mixed integer
programming (MIP) problem. These problems are also NP­hard in general. How­
ever, there exist some ILP and MIP subclasses that are efficiently solvable. In order
to solve linear programs that contain integer variables, heuristics and other advanced
algorithms such as cutting­plane methods, branch and bound or hybrid versions of
them (for instance branch and cut algorithms) are often employed.

A.2 Formulation of Maximum­Constraints

At several places in the thesis, constraints in form of a maximum function are used.
In this section different modeling possibilities of these constraints are described.

Let a1,a2, . . . ,an be variables of a mixed integer program. Then, the maximum
b =max (a1,a2, . . . ,an) can be determined in two ways.

1. By adding appropriate constraints and modification of the objective function
to the MIP.

2. By adding constraints that contain binary variables and big­M constants.

A.2.1 Modification of the Objective Function

A term b = max (a1,a2, . . . ,an) can be calculated in a minimization problem by n
inequalities b ≥ ai , i = 1 . . . n and the addition of b to the objective function, f (x)+
b .
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A.2.2 Usage of Binary Variables

First, let us only consider the maximum b =max (a1,a2) of two variables a1 and a2.

Theorem A.1 (Max2­Constraint). Let a1, a2, and b be variables of a MIP. Then, the
term b =max (a1,a2) is equal to the following system of four inequalities.

b ≥ a1(A.1)

b ≥ a2(A.2)

b ≤ a1+βM1(A.3)

b ≤ a2+ (1−β)M2(A.4)

Where β is a binary variable and M1 and M2 are big­M constants.

Proof. We use a proof by exhaustion. Thus, the following three cases have to be
considered.

1. Case: a1 > a2⇒ b = a1

From the assumption, it follows that constraint (A.2) is redundant since it is
dominated by constraint (A.1). The binary variable β cannot be 1 because
otherwise constraint (A.4) will result in b ≤ a2, which is a contradiction to the
assumption. Thus β is forced to be zero. Hereby, constraint (A.3) becomes
b ≤ a1, which finally leads to b = a1.

2. Case: a2 > a1⇒ b = a2

The rationale is analogous to the one of the first case.

3. Case: a1 = a2⇒ b = a1 = a2

If a1 equals a2, also constraint (A.1) and constraint (A.2) are equal. The value
of β is not important since in case of β = 0 as well as in case of β = 1,
both constraints, (A.3) and (A.4), are satisfied and either the one or the other
becomes b ≤ a{1,2}. From this, it follows directly that b = a1 = a2.

Within the proof, it is assumed that the constants M1 and M2 are large enough to
satisfy the corresponding constraints.

Corollary A.1 (MaxN­Constraint). The constraints for deriving the maximum b out
of n variables ai , b =max (a1,a2, . . . ,an), can be directly obtained by the recursive appli­
cation of Theorem A.1.

b = max (a1,a2, . . . ,an) =max (a1,max (a2, ...,an)) = . . .
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BAppendix B
Further Details of the PAULA

Language

B.1 Lexical Structure

The lexical structure of the PAULA language is very similar to other common pro­
gramming languages like C or Perl. The following section briefly discusses the rele­
vant issues.

B.1.1 White Space

PAULA, like many other languages, is a free­format language, which means that in
most cases white space (that is, spaces, tabs and line breaks) does not play any role
with respect to syntax or semantics of the language. The only place where a white
space is important is when it appears between characters that would be interpreted
differently when the white space was not present. For example, ’andb’ is completely
different from ’and b’.

B.1.2 Comments

There are three ways of including comments in the source code:

• C­style comments. Anything between ’/*’ and ’*/’ is ignored. As in C, such
comments can span multiple lines.

• C++­style comments. This sort of comment starts with ’//’ and continues up
to the end of the current line.
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• Unix­style comments (as found for example in sh, make, and many other pro­
grams). This kind of comment starts with ’#’ and terminates at the end of the
current line.

Comments are treated like white space, that means, they are ignored by the parser if
they do not serve as token separators. For example, ’andb’ is a single token, while
’and/*foo*/b’ will be interpreted as the token ’and’ followed by the token ’b’.

B.1.3 Tokens

A token is a sequence of characters and represents a terminal symbol in the syntactic
grammar. The types of tokens in the PAULA language are the same as in most other
programming languages and are described in the following.

B.1.3.1 Words

A word starts with a letter (’a’–’z’, ’A’–’Z’, or the underscore character ’_’) and then
continues with an arbitrary long sequence of letters and digits. Any other character
marks the end of the word. Some words have a special meaning in the PAULA
language and are called keywords. Those keywords are usually printed with a bold
font throughout this document. A list of all keywords is given in Section B.3. Any
word that is not a keyword is called identifier.

B.1.3.2 String Literals

A string literal is a sequence of characters enclosed in double quotes (for example,
”hello”). To include a literal quote sign in the string, it must be escaped like
this: ”This program is called \”PARO\”.”. To include a literal ’\’ in the
string, use ’\\’. The sequences ’\n’, ’\r’ and ’\t’ are also available and work just like
in C, that is, they represent the line feed (LF), carriage return (CR), and horizontal
tab control characters.

B.1.3.3 Integer and Float Literals

Integer literals can be written in normal decimal notation (for example, ’42’), hex­
adecimal notation with either uppercase or lowercase letters (for example, ’0x7f’ or
’0X7F’), or octal notation (for example, ’065’).

Float literals can have one decimal point (for example, ’3.1415’), an optional
signed exponential part with either an uppercase or lowercase delimiter (for example,
’5e6’, ’5E-30’) or both (for example, ’6.022e-23’).
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B.1.3.4 Boolean Literals

A boolean literal is simply one of the words true and false.

B.1.3.5 Special Tokens

Special tokens are the punctuators and operators of the language. In most cases, these
tokens are exactly one special character (that is, not a letter, digit, or underscore).
Examples for such tokens are ’+’, ’(’, ’;’ and many more. However there are some
tokens that consist of two special characters without any white space between them,
for instance ’>>’, which is a bitwise shift operator just like in C. A list of those tokens
is available in Section B.4. Note that the lexical scanner first tries to find such a two
character token before returning separate tokens for each character. So if one needs
to write two times the token ’>’, it is necessary to put a space between the two ’>’
characters (’> >’), otherwise it would be interpreted as a single token (’>>’).

B.1.4 Inclusion of other Files

Like C, the PAULA language offers the possibility to include other source files, which
could contain, for instance, common definitions. The syntax is the following:

include(filename)

where filename is a string literal as defined in Section B.1.3.2).
Example:

include("alu.paro")

Note that there is no semicolon after the include statement. This statement is
more like a macro, which can appear anywhere inside the program text. Especially,
it does not need to be on a line of its own, like the #include statement offered by
the C preprocessor.

B.1.5 Special Statements

Like the C preprocessor, the PAULA language also offers special statements to have
the system print warning or error messages during parsing.

Example:

warning("program has not been tested yet")

If the keyword warning is replaced by error, the parser stops parsing at this
point. These two statement may be used anywhere in the program, just like the
include statement.
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B.2 Data Types

B.2.1 Built­in Data Types

The goal of the PARO project is to generate hardware descriptions or to target WP­
PAs. For that reason, the data types of the PAULA language are tailored to the needs
of hardware implementations and VLIW architectures, respectively. Currently, there
are four basic data types available: boolean, integer, fixed and float, which are de­
scribed in the following subsections.

B.2.1.1 notype

If a user does not want to specify a data type at all, the pseudo type notype should
be used. This allows to explore all the possible program transformations without
taking care of data types.

B.2.1.2 boolean

The boolean data type is simply a 1­bit signal that can have the values ’true’ or ’false’.
In the PAULA language, this type is referenced by the keyword boolean.

B.2.1.3 integer

The integer data type is a bit vector that can be an operand for all basic mathematical
and bitwise operations. An integer can be either signed or unsigned, and can have
any positive width. An integer type is specified as follows:

[unsigned|signed] integer<width>

If neither signed nor unsigned are given, the integer is signed by default. Integers
are represented in two’s complement, with values from 0 to 2wi d t h − 1 for unsigned
integers, and from −2wi d t h−1 to 2wi d t h−1− 1 for signed integers.

B.2.1.4 fixed

The fixed data type is the preferred type for fixed point arithmetical operations. Like
the integer data type, it can be signed or unsigned. A fixed data type has a width,
which specifies the total number of bits, and a precision, which is the number of bits
after the binary point. This definition implies that the width must always be greater
than or equal to the precision if the fixed type is unsigned. For signed fixed types,
the width must be at least one bit larger than the precision to hold the additional
sign bit. A fixed type is specified as follows:
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[unsigned|signed] fixed<width,precision>

If neither signed nor unsigned are given, the fixed is signed by default.

B.2.1.5 float

The PAULA language supports float data types where the number of mantissa and
exponent bits can be selected by the user. The float type is always signed. The syntax
to define a float type is the following:

float<mantissa width,exponent width>

B.2.2 Type Conversions

Type conversions (“casts”) are used to convert one data type into another, provided
that the two types are compatible in a certain way. Those conversions are done
automatically by the PARO system in several situations, or can be explicitly included
in the source code by the programmer.

B.2.2.1 Automatic Conversions

Consider the following expression:

a[i,j] = b[i,j] + c[i,j]

where a is of type signed integer<32>, b is of type signed integer<16>

and c is of data type signed integer<8>. It would of course be very incon­
venient if a programmer has to explicitly convert c into an integer of width 16 in
order to perform the addition, and also convert the 16 bit result to 32 bit so that
it can be assigned to a. For that reason, the PARO system automatically includes
type conversions in such situations. However, since those implicit conversions can
lead to subtle problems, only the most basic conversions are done automatically. All
remaining conversions need to be written down explicitly in the source code.

Widening Conversions The conversions that are done in the example above are
so­called widening conversions, which convert one data type into a “wider” data type,
where “wider” usually means more bits. Widening conversions are always done in a
way that no information gets lost.

Table B.1 shows between which types widening conversions are possible, and
what conditions must be fulfilled.
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Table B.1: Widening Conversions.
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Remarks:

1. Since the boolean type is regarded as a special type only for logical expressions,
no automatic widening conversions are done, although they would be possible
(e.g., into integer with the values 0 for false and 1 for true).

2. When converting unsigned into signed, one additional bit is required as sign
bit.

3. Converting signed into unsigned is never done automatically (for obvious rea­
sons).

4. The number of bits before the binary point of the destination fixed type must
be greater than or equal to the width of the integer.

5. Converting fixed into integer is possible if the fixed type has no bits after the
binary point (in which case it is obviously equivalent to an integer).

6. Since the float type has not yet been specified in detail, there are also no widen­
ing conversions.

B.2.3 Explicit Conversions

If a conversion is not done automatically by the PARO system, or done in the wrong
way, the user is able to explicitly include type casts in the source code. The syntax is
similar to the syntax used in C++:

cast<newtype>(expression)

newtype can be either a built­in data type or a type alias.
Example:

a[i,j] = cast<signed integer<32> >(b[i,j] + c[i,j]);

Note the space between the two ’>’ characters. Without this space, the sequence
would be interpreted as the bitwise right shift operator ’>>’, which would be a syntax
error. See also Section B.1.3.5.

B.3 PAULA Keywords

Here is a list of all keywords in the current version of the PAULA language.
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allocation

and

bindingpossibility

cast

component

const

constant

do

for

function

if

ifrt

in

input

infinite

not

od

on

or

op

ops

out

output

par

parameter

program

resourcetype

step

simulatorplugin

to

typealias

variable

The following keywords are used as big operators:

SUM

PRODUCT

MIN

MAX

The following keywords are used as data types:
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boolean

integer

fixed

float

notype

signed

unsigned

The following keywords are used as literals for data type boolean:

false

true

The following keywords are used for special purposes:

error

include

warning

The following keywords are reserved for future extensions to the language:

begin

case

define

end

null

switch

type

typedef

while

B.4 PAULA Multi­Character Operators

Here is a list of all PAULA operators that consist of more than one character. See
also Section B.1.3.5.

==

!=

>=

<=

217



B. Further Details of the PAULA Language

&&

||

<<

>>

B.5 EBNF of PAULA

adding_operator = ’+’ | ’-’;

big_operator = ( ’SUM’ | ’PRODUCT’ | ’MIN’ | ’MAX’ ) ’[’

indexspace ’]’ ’(’ expression ’)’;

bitwise_and_expression = equality { ’&’ equality };

bitwise_or_expression = bitwise_xor_expression { ’|’

bitwise_xor_expression };

bitwise_xor_expression = bitwise_and_expression { ’^’

bitwise_and_expression };

builtin_type = "boolean" | "float" | ( ["signed"|"unsigned"]

"integer" "<" integer ">" ) | ( ["signed"|"unsigned"] "fixed"

"<" integer "," integer ">" ) | "notype";

cast = "cast" "<" type ">" "(" expression ")";

constant = [ ’+’ | ’-’ ] ( integer | float );

convex_indexspace = indexspace_term { ( ’and’ | ’&&’ )

indexspace_term };

digit = ’0’ | ’1’ | ... | ’9’;

equality = shift_expression [ relational_operator

shift_expression ];

equation = [ equation_label ] indexed_variable ’=’ equation_rhs

[ ’if’ ’(’ indexspace ’)’ ] ’;’;

equation_label = identifier ’:’;

equation_rhs = expression | ’ifrt’ ’(’ expression ’,’ expression

’,’ expression ’)’;
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expression = logical_or_expression;

factor = primary | ( unary_operator factor );

float = digit { digit } [ ’.’ digit { digit } ] [ ( ’e’ | ’E’ )

[ ’+’ | ’-’ ] digit { digit } ];

for_statement = ’for’ ’(’ identifier ’=’ integer ’to’ integer [

’step’ integer ] ’)’ programblock_body;

function_call = identifier ’(’ expression { ’,’ expression }

’)’;

function_declaration = ’function’ identifier ’(’ type { ’,’ type

} ’)’ type ’;’;

identifier = word;

index_expression = index_term { ( ’+’ | ’-’ ) index_term };

index_term = [ ’+’ | ’-’ ] ( ( integer [ ’/’ integer ] ) | (

integer [ ’/’ integer ] ’*’ identifier ) | ( identifier ) );

indexed_variable = identifier ’[’ index_expression { ’,’

index_expression } ’]’;

indexspace = [ lattice_definition ’:’ ] convex_indexspace { (

’or’ | ’||’ ) convex_indexspace };

indexspace_term = index_expression ( ’>=’ | ’<=’ | ’>’ | ’<’ |

’==’ ) index_expression;

integer = digit { digit };

lattice_definition = identifier ’=’ index_expression { ’,’

identifier ’=’ index_expression };

letter = ’a’ | ’b’ | ... | ’ z’ | ’A’ | ’B’ | ... | ’Z’ | ’_’;

logical_and_expression = bitwise_or_expression { ( ’&&’ | ’and’

) bitwise_or_expression };

logical_or_expression = logical_and_expression { ( ’||’ | ’or’ )

logical_and_expression };
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multiplication_operator = ’*’ | ’/’ | ’%’;

par_statement = ’par’ ’(’ indexspace ’)’ programblock_body;

parameter_declaration = ’parameter’ identifier [ ’=’ [ ’+’ | ’-’

] integer ] ’;’;

primary = indexed_variable | constant | big_operator |

function_call | cast | ( ’(’ expression ’)’ );

program = ’program’ identifier ’;’ { typealias_declaration |

variable_declaration | function_declaration |

parameter_declaration } { programblock } ’end’ ’program’ ’;’;

programblock = [ programblock_label ] programblock_statement;

programblock_body = ’do’ { equation | programblock } ’od’;

programblock_label = identifier ’:’;

programblock_statement = par_statement | for_statement;

relational_operator = ( ’==’ | ’!=’ | ’>’ | ’<’ | ’<=’ | ’>=’ );

shift_expression = simple_expression { shift_operator

simple_expression };

shift_operator = ’«’ | ’»’;

simple_expression = term { adding_operator term };

string = ’"’ ? any character ? ’"’;

term = factor { multiplication_operator factor };

type = builtin_type | typealias;

typealias = identifier;

typealias_declaration = ’typealias’ identifier type ’;’;

unary_operator = ’+’ | ’-’ | ’!’ | ’not’ | ’ ’;

variable_declaration = ’variable’ identifier integer [ ’in’ |

’out’ ] type ’;’;

word = letter { letter | digit };
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Ablaufplanungsverfahren für Schleifenprogramme
zur Generierung durchsatzoptimierter

Hardware­Beschleuniger
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Zusammenfassung

Gegenstand der vorliegenden Dissertationsschrift sind neue Techniken zur Model­
lierung und Parallelisierung von berechnungsintensiven Algorithmen in Form von
verschachtelten Schleifenprogrammen, sowie Methoden zur Ablaufplanung und Al­
lokation für Hardware­Beschleuniger mit hohem Durchsatz. Diese Ansätze bilden
zusammen das zentrale Ergebnis dieser Arbeit: Eine einheitliche Methodik zur Ab­
bildung von verschachtelten Schleifenprogrammen. Die Abbildungsmethodik kann
sowohl für dedizierte Hardware­Beschleuniger, als auch für bestimmte Klassen von
grob­granularen, rekonfigurierbaren Architekturen und Feldern aus eng gekoppelten,
programmierbaren Prozessoren eingesetzt werden. Die wesentlichen Beiträge der Ar­
beit werden im Folgenden kurz zusammengefasst. Im Anschluss werden zukünftige
Richtungen in diesem herausfordernden Forschungsgebiet aufgezeigt.

Beiträge

Modellierung. Um berechnungsintensive Programme auf Prozessorfelder systema­
tisch abbilden zu können, ist ein profundes mathematisches Modell von großer
Wichtigkeit. In diesem Zusammenhang wurde die neue Algorithmenklasse der dyna­
misch stückweise linearen Algorithmen (engl. dynamic piecewise linear algorithms) und
eine entsprechende Graph­Repräsentation zur Modellierung von iterativem, mehrdi­
mensionalem Datenfluss entwickelt. Die Klasse von dynamisch stückweise linearen
Algorithmen erweitert bekannte Modelle, die auf Systemen von Rekurrenzgleichun­
gen basieren, welche über polyedrische Iterationsräume definiert sind. Die Erweite­
rung besteht in der Möglichkeit erstmalig auch spezielle dynamische Datenabhän­
gigkeiten zu modellieren, welche in vielen wichtigen Algorithmen auftauchen, je­
doch in existierenden Ansätzen zur Schleifenparallelisierung nicht behandelt werden
können. Durch diese Neuerung wird das Spektrum an Anwendungen mit mehrdi­
mensionalem Datenfluss, welches parallelisiert und auf massiv­parallele Prozessorfel­
der abgebildet werden kann, erheblich erweitert. Zum Beispiel verfügen eine Men­
ge von berechnungsintensiven Anwendungen zur Video­ und Bildverarbeitung über
verschachtelte Schleifenprogramme mit laufzeitabhängigen Bedingungen. Diese An­
wendungen sind nun parallelisierbar und können infolgedessen sowohl auf dedizierte
Hardware­Beschleuniger als auch auf eng gekoppelte, programmierbare Prozessor­
felder abgebildet werden. Auf Basis der Klasse der dynamisch stückweise linearen
Algorithmen wurde die Programmiersprache PAULA eingeführt. Dementsprechend
fokussiert sich die Sprache ebenfalls auf die Modellierung von datenflussintensiven
Anwendungen. Sie ermöglicht die Spezifikation von hoch­parallelen Algorithmen
auf Instruktions­, Daten­ und Schleifenebene. PAULA ermöglicht sehr kompakte
und effiziente Verhaltensbeschreibungen und dient als Entwurfsgrundlage für die
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Generierung von dedizierten Hardware­Beschleunigern oder sie kann als höhere Pro­
grammiersprache zur Algorithmenabbildung für eng gekoppelte, programmierbare
Prozessorfelder verwendet werden. Die Sprache deckt ein weites Feld an Anwen­
dungen ab. Beispiele umfassen die Bereiche der digitalen Bild­, Video­ und anderer
Formen der Signalverarbeitung, der linearen Algebra, der Kryptographie und viele
weitere Domänen des wissenschaftlichen Rechnens, in denen effiziente Parallelisie­
rungstechniken und Hardware­Beschleuniger unabdingbar sind. Die Intention zur
Entwicklung einer neuen Sprache war nicht die Verbreitung einer weiteren paral­
lelen Programmiersprache, sondern das Bedürfnis eine maßgeschneiderte Beschrei­
bungsmöglichkeit zu haben, die exakt die in dieser Arbeit vorliegenden Konzepte
widerspiegelt. Es wir angemerkt, dass die vorgestellten Spracheigenschaften auch in
einer ’C­ähnlichen’ oder anderen gängigen höheren Programmiersprache hätten aus­
gedrückt werden können. Um allerdings eine Programmiererin oder einen Program­
mierer nicht fehlzuleiten, wäre die Liste an Einschränkungen und Modifikationen
ähnlich lang wie die Beschreibung der Sprache PAULA selbst.

Ablaufplanung und Allokation. Exakte und ganzheitliche Ablaufplanungsverfah­
ren werden in der vorliegenden Schrift diskutiert. Diese Verfahren berücksichtigen
sowohl eine lokale Allokation (Ressourcen innerhalb eines Prozessors), als auch eine
oder mehrere Ebenen globaler Allokation (Algorithmenpartitionierung auf ein Feld
von Prozessoren). Durch diese enge Verflechtung werden optimale Ablaufpläne, be­
zogen auf den Durchsatz beziehungsweise die Gesamtausführungszeit des betrachte­
ten Algorithmus, ermittelt. Zur Ermittlung der Ablaufpläne wurde ein Verfahren ba­
sierend auf gemischt­ganzzahliger Programmierung entwickelt. Hierbei wurde erst­
mals eine Methode präsentiert, die sowohl den lokalen Ablaufplan innerhalb eines
Prozessors, als auch den globalen Ablaufplan (zwischen den Prozessoren in einem
Feld) für möglicherweise mehrere Partitionierungsebenen gleichzeitig optimiert. In
diesem Zusammenhang wurde eine neue Nebenbedingung zur Sequentialisierung
der Abarbeitung im Fall beschränkter Ressourcen entwickelt. Der vorgestellte Ansatz
resultiert in bis zu 39 % schnelleren Ablaufplänen im Vergleich zu herkömmlichen
Ansätzen. Der zweite bedeutende Beitrag im Bereich der Ablaufplanung ist die For­
mulierung von ressourcengewahren Nebenbedingungen, welche den gegenseitigen
Ausschluss im Fall von iterations­ oder laufzeitabhängigen Bedingungen berücksich­
tigen und hierdurch bei beschränkten Ressourcen ebenfalls den Ablauf (Durchsatz)
erheblich verbessern können. Zusätzlich wurden weitere neue Nebenbedingungen
zur Berücksichtigung von Beschränkungen, die bei der Abbildung auf ein fest vor­
gegebenes programmierbares Prozessorfeld gegeben sind, entwickelt. Diese Bedin­
gungen betrachten Registerbeschränkungen innerhalb der Prozessoren und Kanalbe­
schränkungen innerhalb des Prozessorfelds. Gegenüber existierenden Arbeiten, die
entweder nur Teilprobleme lösen oder hierarchisch arbeiten, ist der in dieser Arbeit
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vorliegende Ansatz einzigartig, da sich alle entwickelten Techniken je nach Bedarf zu
einem einzigen gemischt­ganzzahligen Programm kombinieren lassen und ganzheit­
lich ein Ablaufplan optimiert werden kann.

Ergebnisse. Mehrere Experimente veranschaulichen die Stärke der vorgestellten
Methodik. Als Fallstudien wurden mehr als 25 Algorithmen ausgewählt. Für diese
wurde eine ressourcenbeschränkte Ablaufplanung durchgeführt und im Anschluss
automatisch ein entsprechender Hardware­Beschleuniger synthetisiert. Die Komple­
xität der zugehörigen reduzierten Abhängigkeitsgraphen umfasst hierbei einige Dut­
zend bis zu mehr als 150 Knoten. In jedem Fall konnte ein optimaler Ablaufplan
innerhalb weniger Sekunden ermittelt werden.

Die Mächtigkeit des vorgestellten Ansatzes basierend auf Prozessorfeldern (bzw.
Schleifenpartitionierung) im Vergleich zum Abrollen von Schleifen (engl. loop unrol­
ling) wurde ebenfalls demonstriert. Durch den Einsatz desselben Entwurfswerkzeugs
PARO, welches beide Transformationen beherrscht, wurde eine faire, quantitative
Evaluierung der beiden Ansätze für eine Menge von berechnungsintensiven Algo­
rithmen möglich. Aufgrund der Regelmäßigkeit und der Ressourcengruppierung in
mehrere Prozessorelemente, erreicht der Prozessorfeld­basierte Ansatz in allen Expe­
rimenten einen weitaus höheren Datendurchsatz, bis zu 42 % verglichen mit dem
Abrollen von Schleifen.

Letztendlich wurde eine komplexe Anwendung (reduzierter Abhängigkeitsgraph
mit 384 Knoten und 633 Kanten) aus dem Bereich der Bildverarbeitung betrachtet.
Moderate Zeiten zur Findung von optimalen Ablaufplänen, welche die simultane
Ausführung von Operationen von bis zu 85 unterschiedlichen Iterationen verkäm­
men, demonstrieren die Anwendbarkeit des Ansatzes ebenfalls für sehr komplexe
Beispiele.

Dank der Modularität des gewählten Ansatzes konnte die Methodik ebenfalls
leicht für Prozessorfelder mit Teilwortparallelismus erweitert werden [SMHT08].

Zukünftige Richtungen

Die Beiträge in den Bereichen Modellierung, Ablaufplanung und Allokation für un­
terschiedliche Zielarchitekturen ebnen den Weg für zahlreiche fortführende Arbei­
ten. Ein wichtiges Forschungsgebiet ist die Integration von Beschleunigern in ein
Einchipsystem (engl. System­on­a­Chip) und die Interaktion mit weiteren Beschleu­
nigern. Bezüglich der Systemintegration sind mehrere Ansätze möglich. Denkbar ist
zum Beispiel eine enge Koppelung über Register oder eine lose gekoppelte Integra­
tion mittels FIFOs oder adressierbaren Pufferspeichern. Das letztere Konzept wird
benötigt, wenn die verwendeten Daten eines Algorithmus in mehrere kleinere Da­
tenblöcke partitioniert und zu lokalen Speichern des Hardware­Beschleunigers trans­
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portiert werden müssen. Die größten Herausforderungen bei diesem Ansatz sind die
Generierung von geeigneten Adress­Generatoren und die Konstruktion von an die
Kommunikationsressourcen angepassten Ablaufplänen. Bezogen auf die Modellie­
rung, könnten solche Kommunikationsprimitive relativ einfach in die Architektur­
beschreibung von PAULA integriert werden. Im Fall von kommunizierenden Schlei­
fenprogrammen (Hardware­Beschleunigern), kann die Modellierung beispielsweise
durch Task­Graphen erfolgen, wobei jeder Task ein Schleifenprogramm darstellt.
Das Finden von geeigneten Transformationen für jedes Schleifenprogramm, um die
Gesamtausführungszeit zu maximieren oder den benötigten Puffer zwischen den ein­
zelnen Beschleunigern zu minimieren, kann zu einem schwierigen Explorationspro­
blem führen.

Ein weiteres hochinteressantes Forschungsgebiet ist die Entwicklung einer sym­
bolischen Entwurfsmethodik. Ein derartiger Ansatz erscheint besonderes gewinn­
bringend für dynamisch rekonfigurierbare oder programmierbare Architekturen wie
zum Beispiel WPPAs (Abkürzung des engl. Begriffs weakly­programmable processor
array). Eine symbolische Abbildung in Abhängigkeit der verfügbaren Prozessoren
würde zu einer Einsparung von Konfigurationsspeicher führen und könnte eben­
falls die Rekonfigurationszeit zur Reaktion auf Ressourcenänderungen oder Fehler
erheblich reduzieren. Die Umsetzung einer symbolischen Entwurfsmethodik erfor­
dert entsprechende symbolische Methoden der linearen Algebra (zum Beispiel wie in
Maple [Hec93]) und Verfahren zur Bestimmung symbolischer Ablaufpläne. Hierfür
könnte beispielsweise parametrische ganzzahlige Programmierung (PIP [Fea88]) ver­
wendet werden. Jedoch ist die Leistungsfähigkeit von PIP im Vergleich zu kommer­
ziellen Lösungsansätzen wie CPLEX beschränkt. Außerdem können unterschiedliche
Parameterkombinationen zu einer Explosion des Lösungsraums und somit zur Un­
lösbarkeit des Problems führen. Nichtsdestotrotz könnte der Ansatz für eindimen­
sionale Prozessorfelder (abhängig von einem Parameter), Projektionen als Allokation
oder rechteckigen Partitionen zu Erfolg versprechenden Ergebnissen führen.
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